

Professional AC Drive Manufacturer

Edition: Version 2.1 in 2023 Copyright, subject to change without notice.

EC6000

AC Drive

User Manual v2.1

TABLE OF CONTENTS

1	Introduction	· 1
	1.1 Safety precautions	1
	1.2 Technical specifications	4
2	Read Below Information Before Use·····	7
	2.1 Delivery inspection	7
	2. 2 Transport·····	9
	2.3 Storage	9
	2.4 Considerations of choices of AC drives	9
	2.5 Note of parameters setting	10
3	Mechanical and Electrical Installation	11
	3.1 Installation environment·····	
	3.2 Conditions for installation $\cdots \cdots \cdots$	11
	3.3 Installation dimension of AC drive $\cdots \cdots \cdots$	
	3.4 Instruction for wire layout ·····	
	3.5 Basic wire layout	
	3.6 Standard wiring diagram	16
	3.7 System wiring diagram·····	
	$3.8 \ \text{Main circuit connection functions} \cdots \cdots$	
	3.9 AC drive control terminal connections ······	21
4	Basic Operation and Commissioning	23
	4.1 LED keyboard panel appearance and operation process	23
	4.2 LCD display keyboard panel appearance and operation process $ \cdots \cdots $	27
	4.3 Check and test before operation $\cdots \cdots \cdots$	29
	4.4 Running way	
	4.5 Test run	29
5	Function Parameters Description	32
	5.1 PO Standard parameter group	
	5.2 P1 Motor parameter	- 38
	5.3 P2 Vector control parameters ·····	
	5.4 P3 V/F control parameter·····	
	5.5 P4 Input terminals function group	
	5.6 P5 AI terminal parameters group	
	5.7 P6 Start/Stop control parameters group	
	5.8 P7 System configuration parameter group	
	5.9 P8 Auxiliary functions	
	5.10 P9 Fault and protection parameters group $\cdots\cdots$	
	5.11 P10 Process control PID function ·····	82

	5.12 PB Communication control function parameter group	87
	5.13 PC Optimization parameters ·····	89
	5.14 PD Multi-reference and simple PLC function	92
	5.15 PF User-defined function codes ·····	98
	5.16 AO Torque control and restricting parameter	98
	5.17 AI Constant pressure water supply parameter group	101
	5.18 U Monitoring parameters ·····	109
6	Regular Inspection and maintenance	111
	6.1 Daily inspection ·····	111
	6.2 Periodic inspection ·····	111
7	Fault and solutions	113
	7.1 List of actions to protect·····	113
	7.2 Reset alarm ·····	116
	7.3 The causes and solutions for AC drive's faults \cdots	118
8	Appendix	120
	8.1 Appendix1 Functional code table ·····	120
	8.2 Appendix2 Rs485 communication protocol ······	155
	8.3 Appendix3 Product specification ·····	162
	8.4 Appendix4 Optional digital maintenance ·····	163
	8.5 Appendix5 Braking resistor ·····	165
	8.6 Appendix6 Warranty service	166

1.Introduction

Thank you for using the EC6000 series high-performance current vector control AC drive developed by ZHEJIANG EACON Electronic Technology Co., Ltd. EC6000 series AC drive is a high-performance & low noise general-purpose AC drive, manufactured using high-quality components and incorporating the latest micro-processor technology available. It realizes high torque, high precision speed control drive, and supports speed sensorless torque control and PG torque control, which can meet various requirements of general AC drive. EC6000 series AC drive is a product that combines the general needs of customers with the industrial needs. It provides customers with practical functions such as main and auxiliary frequency setting, operation channel frequency binding, PID regulator, simple PLC, textile swing frequency, programmable input and output terminal control, pulse frequency setting and built-in Modbus, CAN bus, Profibus-DP bus, 485 free protocol, etc. For manufacturing and auto-mation engineering customers to provide high integration of integrated solutions.

This manual describes the matters relevant to the installation, parameters setting, abnormality diagnosis and solution, and the daily maintenance of the AC drive that need attention of the users. In order to ensure the correct installation and operation of the motor drive, give full play to its superior performance, please carefully read this manual before the installation, properly keep it and give it to the machine users.

Contact our agents or customer service center if you have problems during the use. We will serve you wholeheartedly.

The instructions are subject to change, without notice, due to the upgrade of our products.

1.1 Safety Precautions

In order to ensure your personal and equipment safety, please read this manual carefully before using the AC drive.

Warning signs and meanings

The following marks are used in this manual to indicate that it is an important part of safety. Failure to observe these precautions may result in personal injury or death, damage to the product and associated systems.

Danger!	Indicates that failure to comply with the notice will result in death, severe personal injury or serious property damage.
Warning!	Indicates that failure to comply with the notice will result in personal injury or damage to the product and associated systems.
Notice!	Tips for special attention when using this product.

Operational qualification

AC drive is a precise electric and electronic product, thus for the safety of the operators and the equipment, please ensure that the installation and parameters adjustment is done by professional motor Engineers.

Safety guidance

Safety rules and warning signs are proposed for the personal safety of operators, and measures are taken to prevent operators from personal injury and damage to the product and associated systems. Please read this manual carefully before use, and operate in strict accordance with the safety rules and warning signs in the manual.

Danger!

- 1. The power supply must be turned off when laying the wires.
- 2. When the AC power supply is cut off but the indicator light of the manipulator of AC drive is still on, there is still high voltage in the AC drive which is very dangerous, please do not touch the interior circuit and components.
- 3. Do not modify the interior components or circuit of AC drive by your-
- 4. Never connect the main circuit output terminals U, V, and W directly to the AC main circuit power supply as this will damage the drive.
- 5. The terminal of AC drive must be grounded correctly. 6. This series of AC drives can't be used for the occasions related to personal safety, e.g. the life maintaining equipment.

Warning!

- 1. Please do not test the voltage resistance of the interior components of the drive, as the semiconductor of the drive is easy to be punctured and damaged by high voltage.
- 2. The circuit board of the drive has CMOS IC which is extremely easy to be damaged by static electricity, thus please do not touch the circuit board with your hand before taking anti-static electricity measures.
- 3. Even if the motor is inactive, the main loop terminal of the drive may still have dangerous high voltage.
- 4. Only the qualified motor professionals can install the drive, lay the wire, repair and maintain the drive.

Notice!

- 1. When certain functions of the drive are set, the motor may immediately start after the power input.
- 2. Please choose a safe place to install the AC drive to avoid the high temperature, direct sunlight, humidity and splash of water drops.
- 3. Please prevent the children or irrelevant people against being close to the AC drive.
- 4. The AC drive can only be used in the places recognized by our company, and the usage in an environment not recognized by our company may lead to fire, gas explosion or electrification.
- 5. When the wire between the AC drive and the motor is too long, the interlayer insulation of the motor may be damaged, please use the special AC motor for AC drive, or add a reactor between the drive and the motor to prevent the AC motor from being burned due to the damage of insulation.
- 6. The rated voltage of the power system for the drive can't be higher than $\pm 15\%$ of the rated voltage of product, and the current can't be over 5000A RMS (The current of 40HP (30kW) type or above can't be over 10000A RMS).

1.2. Technical Specifications

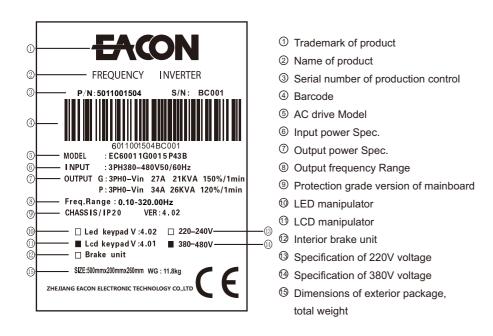
	Item	Specifications					
	Maximum frequency	• Vector control: 0 - 300 Hz • V/F control: 0 - 320 Hz					
	Carrier frequency	$116~\mathrm{kHz}$ The carrier frequency is automatically adjusted based the load features.					
	Input frequency resolution	Digital setting: 0.01 Hz Analog setting: maximum frequ	ency x 0.025%				
	Control mode	• Sensorless flux vector control • Closed-loop vector control • Voltage/Frequency (V/F) control	(CLVC)				
	Startup torque	• G type: 0.5 Hz/150% (SFVC); • P type: 0.5 Hz/100%	0 Hz/180% (CLVC)				
	Speed range	1:100 (SVC)	1:1000 (FVC)				
	Speed stability accuracy	± 0.5%(SVC)	± 0.02%(FVC)				
	Torque control accuracy	± 5% (FVC)					
Standard functions	Overload capacity	• G type: 60s for 150% of the rated current, 3s for 180% ofthe rated current • P type: 60s for 120% of the rated current, 3s for 150% ofthe rated current					
	Torque boost	ost Customized boost 0.1% - 30.0%					
	V/F curve	• Straight-line V/F curve • Multi-point V/F curve • N-power V/F curve (1.2-power 1.8-power, square)	Proint V/F curve ver V/F curve (1.2-power, 1.4-power, 1.6-power,				
	V/F separation	n; half separation					
	Ramp mode	• Straight-line ramp • S-curve ramp Four groups of acceleration/drange of 0.0-6500.0s	eceleration time with the				
	DC braking	DC braking frequency: 0.00 Hz to maximum frequency Braking time: 0.0-600.0s Braking action current value: 0.0%-150.0%					
	JOG control	JOG frequency range: 0.00 - 50. JOG acceleration/deceleration					
	Onboard multiple preset speeds	It implements up to 16 speeds function or combination of DI					
	Onboard PID	It realizes process-controlled system easily.	•				
	Auto voltage regulation (AVR)	It can keep constant output v the mains voltage changes.	oltage automatically when				
	Overvoltage/ Overcurrent stall control	The current and voltage are limited automatically duringthe running process so as to avoid frequent tripping due to overvoltage/overcurrent.					
	High-speed current limiting function	Minimize over-current fault a of AC drive.	nd protect normal operation				

ltem		Specifications			
	Torque limit and control	It can limit the torque automatically and prevent frequent over current tripping during the running process. Torque control can be implemented in the CLVC mode.			
	High performance	Control of asynchronous motor and synchronous motor are implemented through the high-performance current vector control technology.			
	Power dip ride through	The load feedback energy compensates the voltage reduction so that the AC drive can continue to run for a short time.			
	Rapid current limit	It helps to avoid frequent overcurrent faults of the ${\mbox{AC}}$ drive.			
Individua- lized	Timing control	Time range: 0.0-6500.0 minutes			
functions	Multiple communication protocols	It supports communication via Modbus-RTU, PROFIBUSDP, CANlink and CANopen.			
	Motor overheat protection	The optional $I/0$ extension card enables AI4 to receive the motor temperature sensor input (PT100, PT1000) so as to realize motor overheat protection.			
	Multiple encoder types	It supports various encoders such as differential encoder, open-collector encoder, resolver, UVW encoder, and SIN/COS encoder.			
	Advanced background software	It supports the operation of AC drive parameters and virtual oscillograph function, via which the state inside the AC drive is monitored.			
	Running command source	Operation panel Control terminals Serial communication port You can perform switchover between these sources in various ways.			
	Frequency source	There are a total of 10 frequency sources, such as digital setting, analog voltage setting, analog current setting, pulse setting and serial communication port setting. You can perform switchover between these sources in various ways.			
	Auxiliary frequency source	There are ten auxiliary frequency sources. It can implement fine tuning of auxiliary frequency and frequency synthesis.			
RUN	Input terminal	Standard: 8 digital input (DI) terminals, one of which supports up to 50kHz high-speed pulse input 3 analog input (AI) terminals, two of which only supports 0-10 V voltage input and the other supports 0-10 V voltage input or 0-20 mA current input			
		Standard I high-speed pulse output terminal (open-collector) that supports 0-50 kHz square wave signal output 2 digital output (DO) terminal			
	Output terminal	2 relay output (no) terminal 2 relay output terminal 2 analog output (AO) terminal that supports 0 - 20 mA current output or 0 - 10 V voltage output			
	Output terminal LED display	2 relay output terminal 2 analog output (AO) terminal that supports 0-20 mA			

	ltem	Specifications				
	LED display	It displays the parameters.				
Display and operation	LCD display	Optional, Chinese/English prompt operation content				
on the operation panel	Parameters copy	Quick copying of parameters can be realized through LCD operation panel option.				
	Key locking and function selection	It can lock the keys partially or completely and define the function range of some keys so as to prevent mis- function.				
Protection mode	Protection mode	Motor short-circuit detection at power-on, input/output phase loss protection, overcurrent protection, over-voltage protection, undervoltage protection, overheat protection and overload protection				
Optional parts	Optional parts	LCD operation panel, braking unit, I/O extension card 1, I/O extension card 2, user programmable card, RS485 communication card, PROFIBUS-DP communication card, CANlink communication card, CANopen communication card, differential input PG card, UVW differential input PG card, resolver PG card and OC input PG card				
	Installation location	Indoor, free from direct sunlight, dust, corrosive gas, combustible gas, oil smoke, vapour, drip or salt.				
	Altitude	Lower than 1000m				
	Ambient temperature	-10° C to +40° C (de-rated if the ambient temperature is between 40° C and 50° C)				
Environ-	Humidity	Less than 95%RH, without condensing				
ment	Vibration	Less than 5.9m/s (0.6g)				
	Storage temperature	-20℃ ~+60℃				
	IP level	IP20				
	Pollution degree	PD2				

EC6000

2.Read below information before use

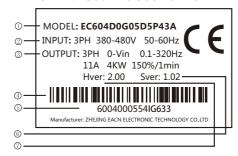

2.1 Delivery Inspection

Every EC6000 AC drive has pass by strict quality management before delivery, and been packed to enhance its collision resistance. The customer should immediately inspect the following inspection steps after unpacking the AC drive.

- ◆ Check whether the AC drive is damaged during the transportation.
- lacktriangle Check whether the type and model of the AC drive are consistent with the information on the package.

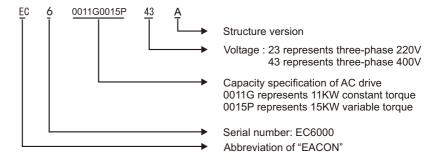
For any inconsistency between the received product and your order, or any problem of the product, please contact with our agents or distributors that sold you the product.

Description of the label of package

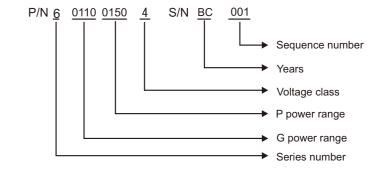


Notice!

The black squares of $10\mbox{-}14$ are the configurations of the AC drive.


Description of the label of AC drive

MODEL:EC604D0G05D5P43A



- 1 AC drive Model
- ② Input power Spec.
- 3 Output power Spec.
- ④ Barcode
- (5) Serial number of production control
- 6 Power card versions
- Structure version

Description of Model

Description of Serial number

This product is a precise device, please handle it with care during the transport, prevent it from severe collision.

2.3 Storage

This product must be in the packing box before installation. If it won't be used for a period, in order to keep it within the warranty of our company and for the future maintenance, the following matters must be paid attention to for the storage:

 $\sqrt{\text{The product must be put in a dust-free}}$ and dry place.

√The temperature of the storage place must be $-20^{\circ}\text{C} \sim +60^{\circ}\text{C}$.

 $\sqrt{\text{The relative humidity of the storage place must be 0%} 95\%$ without frost.

√Avoid putting the product in an environment with corrosive gas or liquid.

√It is better to put the product on a shelf or stand with a proper package.

Notice!

- 1. Even if the humidity meets the requirements of the criterion, if the temperature changes quickly, moisture condensation or icing may also happen, thus the product should not be stored in such place.
- 2. Do not put the product directly on the ground, but on a proper stand. If the surrounding environment is very bad, desiccant should be put in the packing bag.
- 3. When the storage period is longer than 3 months, the surrounding temperature should not exceed 30°C , because the electrolytic condenser is stored with power off, and it will easily degrade if the temperature is high.
- 4. When the AC drive is installed in the installation or control panel but isn't used, especially in the construction sites or the wet places with lots of dust, the AC drive should be removed and put in a proper environment satisfying the storage requirements mentioned above.
- 5. The electrolytic condenser is easy to degrade with power off for a long term. Please do not store the electrolytic condenser with power off for more than one year.

2.4 Considerations for choices of AC drives

1. Use large capacity above 600 kva electric current transformer and capacitor into phase, voltage input side surge current is too large, that could undermine the input side of AC drives. At the moment the input side must be installed an AC reactor, in addition to reduce the current, and improve the effect of the input power.

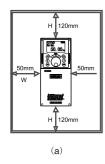
2. To actuate the special AC drive or one AC drive actuate several motors, the total rated current of the motor 1.25 times can't exceed the rated current of the AC drive. It is very careful to choose the AC drive.

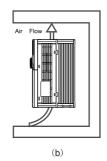
- 3. When the AC drive actuate the motor, the startup, the accelerate and decelerate are limited by the rated current of the AC drive. The starting torque is small(commercial power directly start 6 times when start current, when the AC drive starting, the starting current can't exceed two times), so when the AC drive use for high torque place(For example Elevator, Blender, Machine tool ect), the AC drive must increase one or two grade. The optimal way is increasing one grade of the motor and the AC drive at the same time.
- 4. To consider that when the AC drive break down and stop the output, the stop mode for the motor and the mechanical equipment, if they need sudden stop that must install the mechanical brake.

2.5 Note for parameter setting

FC6000

- 1. Because of the highest speed for the digital operation can reach to 400Hz, so when it use in the highest speed place, it can use the speed limit function limit the output frequency.
- 2. When the DC braking voltage and the braking time setting too highly, that may cause the motor overheating.
- 3. The time for the motor accelerate and decelerate is decided by the motor rated torque, load torque, load inertia ect.
- 4. When the antistall (STALL) act in the accelerate and decelerate, please extend the accelerate and decelerate time. If the accelerate and decelerate must be very fast, and also the inertia load is very big, the AC drive can't speed up or stop the motor in requirement time, that must install the braking resistance (only can shorten the deceleration time) or increase the grade of the motor and the AC drive at the same time.


3.Mechanical and Electrical Installation


3.1 Installation Environment

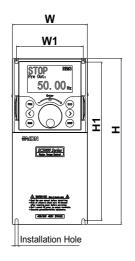
Please install the AC drive in the following environment to guarantee the usage safety of the product:

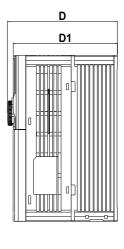
	Ambient temperature	$-10{\sim}+50^{\circ}$ C (14 ${\sim}122^{\circ}$ F) for UL & CUL without anti-dust cover				
	Relative humidity	<90%, without frost				
Operating Environment	Pressure	86∼106 kPa				
	Installation height	<1000m				
	Vibration	<20Hz: 9.80 m/s(1G) max $20\sim50\text{H}:5.88$ m/(0.6G) max.				
	Ambient temperature	-20∼+60° C (-4∼140° F)				
Storage and	Relative humidity	<90%, without frost				
Transport Environment	Pressure	86∼106 kPa				
	Vibration	<20Hz: 9.80 m/s(1G) max 20~50H:5.88 m/(0.6G) max.				
Degree of Pollution	Class 2: suitable for factory environment					

3.2 Conditions for Installation

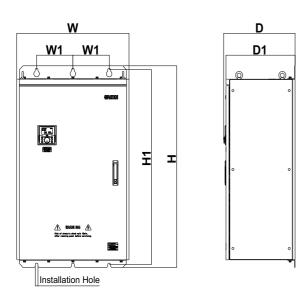
- The AC drive shall be installed vertically with screws, and shall not be installed upside down, obliquely or horizontally on a firm structure.
- ■When the AC drive is running, it will generate heat. To ensure that the cooling air path is as shown in figure (b). There is a certain space in the design, and the heat generated will be emitted upward; therefore, do not install it under the heat-resistant equipment.
- ■When the AC drive is running, the temperature of the heat sink will rise to nearly 90 °C. There for, the mounting surface on the back of the AC drive must be made of materials that can withstand higher temperature.

- ■When the AC drive is installed in the control panel, ventilation and heat dissipation shall be considered to ensure that the ambient temperature of the AC drive does not exceed the specification value. Do not install the AC drive in the airtight box with poor ventilation and heat dissipation.
- ■When installing multiple AC drives in the same control panel, it is recommended to install them horizontally side by side in order to reduce the thermal impact on each other. If it has to be installed up and down, the partition board must be set to reduce the impact of heat generated at the lower part on the upper part.


Notice!


EC6000

- 1. Do not let all kinds of fibers, paper, wood chips (chips) or metal fragments and other foreign matters enter the AC drive or adhere to the cooling fan.
- 2. Installed on structures that will not burn, such as metal, or fire accidents may occur.


3.3 Installation dimension of AC drive

A Structure

B Structure

220V Class

Structure	Power (kW)	W (mm)	W 1	Н	H1	D	D1	Installation Hole
	0.4kW 0.75kW	105	94	160	150	137	129	ф 4. 5
	1.5kW 2.2kW	105	94	216	206	157	149	ф 4. 5
A Structure	4.0kW 5.5kW	126	110	260	246	183	174	Ф6
	7.5kW 11kW	153	137	341	327	204	194	ф7
	15kW 18.5kW	180	120	423	420	204	194	ф9
	22kW 30kW	191	120	471	450	242	232	Ф9

380V Class

Structure	Power (kW)	W (mm)	W 1	Н	H1	D	D1	Installation Hole
	0.75kW	40=		1.00	1.50	105	100	
	1.5kW	105	94	160	150	137	129	Ф 4. 5
	2.2kW	105	94	216	206	157	149	ф 4. 5
	4.0kW	100	34	210	200	101	143	Ψ4. υ
1 . [5.5kW	126	110	260	246	183	174	ф6
A Structure	7.5kW	120	110	200	240	100	174	10
	11kW	153	137	341	327	204	194	ф7
	15kW	100	101	341	341	204	131	41
	18.5kW	180	120	423	420	204	194	ф9
	22kW	100	120	120	420	201	134	
	30kW	191	120	471	450	242	232	ф9
	37kW	131	120	111	100	212	202	4.0
	45kW	300	220	541	516	314	300	ф 11
	55kW							
	75kW	350	270	730	705	354	340	Ф11
	90kW							
	110kW							
	132kW	500	180	780	755	354	340	ф11
B Structure	160kW	650	210	1060	1024	414	400	Ф 16
	200kW							
	220kW				1128		400	ф 18
	250kW	750	230	1170		414		
	280kW							
	315kW							
	350kW	850	275	1280	1236	464	450	Ф 20
	400kW							
	450kW	1040	050	1 400	1000	404	450	
	500kW	1043	250	1426	1382	464	450	Ф 20
	560kW							

3.4 Instruction for Wire Layout

After removing the upper cover, the connection terminal strips are exposed, check whether the terminals of main loops and control loops are marked explicitly and pay attention to the following instructions during connection, do not make improper connections.

3.5 Basic Wire Layout

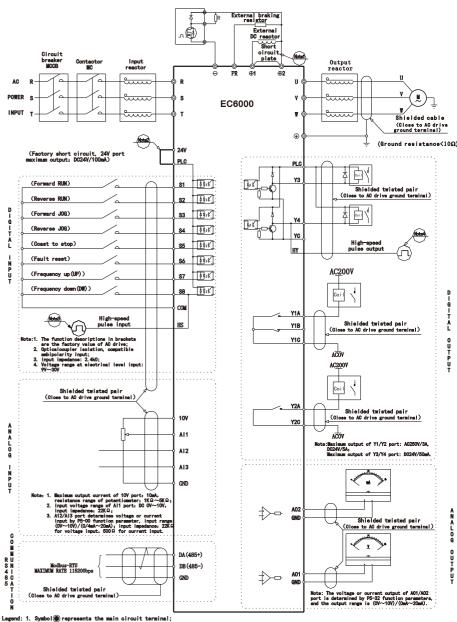
- The power supply must be connected with the terminals of the main loops of AC drive R/L1, S/L2, T/L3. If the power supply is improperly connected with other terminals, the AC drive will be damaged. Besides, check whether the voltage/current of the power supply is within the allowable range indicated on the nameplate.
- The grounding terminals must be grounded well, on the one hand it can prevent electric shock or fire, and on the other hand it can reduce the noise interference.
- lacksquare Connect the terminals with wires, ensure the high reliability of the connection.
 - ■After finishing the wire layout, check the following things:
 - 1. Are all the connections correct?
 - 2. Is there any connection left out?
- 3. Is there any short circuit or line-to-ground short circuit between the terminals and the connecting wires?

When the power is on, if the connections need to be changed, first the power supply should be turned off, and the filter capacitor of the DC part of the loop will need some time to discharge electricity. The work only can begin after the completion of electricity discharge. Besides, because of the residual voltage, sparks may be generated when there is a short circuit, thus it's better to conduct the work under voltage-free conditions.

Notice!

- 1. Grounding wire must be connected, or electric shock or fire may happen.
- 2. The wiring work should be done by the professional technicians.
- 3. Start the work after confirming that the power is OFF or electric shock may happen.

Basic Wire Layout Graph


The wires of AC drive can be divided into main loop and control loop. Users can open the upper cover and see the terminals of main loop and control loop. Users must lay the wires according to the figure below to ensure the accuracy of connections.

Notice!

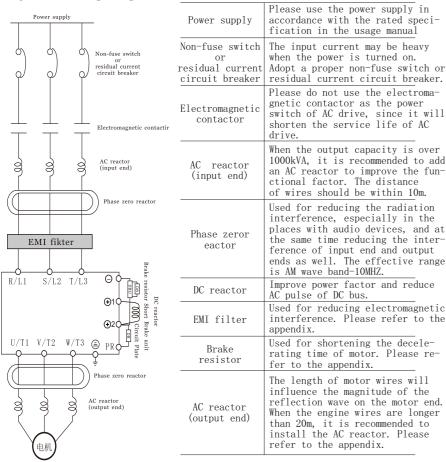
- 1. Grounding wire must be connected, or electric shock or fire may happen.
- 2. The wiring work should be done by the professional technicians.
- 3. Start the work after confirming that the power is OFF or electric shock may happen.

3.6 Standard wiring diagram

FC6000

2. Symbol o represents the main circuit terminal.

Note: 1. When installing DC reactor, be sure to remove the short connector between terminals $\oplus 1$ and $\oplus 2$; EC6020 and below structure without $\oplus 2$ terminal.


- 2, No PR terminal for EC6060 and above.
- 3. The internal power supply (24V port) or external power supply (PLC port) can be selected for $S1{\sim}S8$ port bias voltage, and the factory value 24V port and PLC port are short circuited;
- 4. Port S8 is restricted by function parameter P5-00, which can be used as high-speed pulse input channel with maximum input frequency of 50KHz;
- 5. Port Y4 is restricted by function parameter P5-32, which can be used as high-speed pulse input channel with maximum input frequency of 50kHz.
 6. SP switch pin corresponding legend:

When the Y3 or Y4 terminals use the +24V voltage of PLC and com, the Swl dial switch is down.

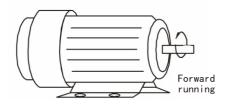
The resistance of the communication end is down to connect.

3.7 System Wiring Diagram

3. 8. Main Circuit Connection Functions

Terminal	Туре	Function Description	
R/L1 S/L2 T/L3	Main circuit power supply input	Input end of commercial power supply	
U/T1 V/T2 W/T3	AC drive output terminal	AC drive output connected with 3-phase induction motor.	
⊕2 PR	External braking resistorconnection	≲37KW with braking unit which is connected o terminal⊕2, PR.To improve the brake moment of orce, an external braking resistor is needed.	
⊕2/⊕ ⊝	Braking unitor DC Input connection	1: Machinery≥45kW without built-in braking unit component. To improve braking power, external braking unit and braking resistor is necessary (both are optional). 2: DC input terminal;	
⊕ 2 ⊕ 1	DC reactor connection	Connect DC reactor to improve the power factor, reduce the DC bus AC pulse.	
=	Grounding terminal	For safety and small noise, AC drive's ground terminal EG should be well grounded.	

General precautions for main loop wiring:

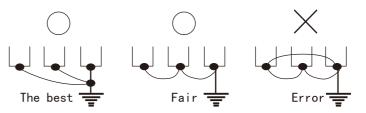

- ■Please do not connect the AC with the output terminal (U/T1, V/T2 and W/T3) of AC drive; otherwise it may cause AC drive damage.
- ■Ensure that the screws of the main loop terminals are tightened to prevent the sparks caused by the loose screw due to vibration.
- The wires of main loop and those of control loop must be separated to avoid misoperation. If an intersection is needed, make them intersect with a right angle.
- Please use isolated cable and conduit, and connect with the two ends of the shielding layer or conduit with ground.
- ■If the installation place of the AC drive is extremely sensitive to interference, please add an RFI filter in a place with a distance from the AC drive as close as possible. The lower the carrier frequency of PWM is, the less the interference there will be.
- When the AC drive is equipped with a residual current circuit breaker for the protection against electric leakage, please select the ones with action current over 200mA and action time over 0.1s to avoid the misoperation of residual current circuit breaker.
- \blacksquare The AC drive, motor and wires will cause noise interference. Pay attention to the surrounding sensors, and check whether there is misoperation of the equipment to prevent the accidents.

Description of the power supply input terminals of the main loop (R/L1 S/L2 T/L3)

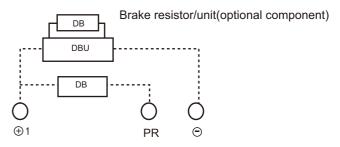
- Ascertain the voltage of power supply and the maximum current that can supply.
- Main loop terminal R/L1, S/L2, T/L3 is connecting to a three-phase AC power through the circuit (wiring) protection with circuit breakers or earth leakage protection circuit breakers, without considering phase sequence connection.
- To cut off power and avoid accident when AC drive protection power is on, electromagnetic contactor to connecting to the circuit is necessary. (The two ends of the electromagnetic contactor should be equipped with R-C surge absorber).
- Don't use main loop ON/OFF switch to start and stop AC drive. Use loop control terminal FWD, REV or RUN/STOP button on the control panel to start and stop AC drive. If you must use main power supply ON/OFF switch to start and stop, do it no more than 1 time within one hour.
- Do not connect the 3-phase power supply machine with the single-phase power supply.

Output terminals of AC drive(U/T1. V/T2. W/T3)

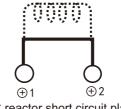
■ Connect AC drive output terminal to 3 phase motor according to correct phase order. If motor rotates in wrong direction, change any 2 phase of U, V, W.



- The output terminal of AC drive can't be connected to the inlet phase capacitor or surge absorber. If the wires are very long, it should be connected with the AC reactor on the output end.
- ■There is high frequency current in the extra long wire between motor and AC drive. This may cause AC drive over flow and stop. Besides, long wire increase leaking current, this leads to poor precision of current value. AC drive≤3.7KW choose wire less than 20 meters to motor, less than 50 meters for AC drive over 3.7 KW. If the wire is very long a wave filter connected to the output side AC reactor is necessary.
 - ■Used insulation strengthened motor.


Grounding terminals of AC drive (EG)

FC6000


- ■For safety and noise reduction, the grounding terminals of AC drive should be well grounded.
- The grounding wire of AC drive can't be grounded together with the machines with heavy current load e.g. the electric welding machine and high power motor, they should be grounded separately instead.
- ■In order to prevent electric shock and fire, the external metal grounding wires of electric equipment should be wide and short, and connected to the special grounding terminals of the AC drive system.
- If there is more than one AC motor speed controller connecting with the ground. Please make sure that is does not form grounding loop, shown as the following figures:

The connection terminals of the external brake resistor [+ 1,PR] and the connection terminals of the brake unit [-, +1]

DC reactor connetion terminal + 1 + 2

DC reactor short circuit plate

3.9. AC drive control terminal connections

Туре	Terminal	Function Description	
	10V-GND	External+10V power supply	Provide +10V power supply for external unit, maximum output current: 10mA Generally, it provides power supply to external potentiometer with resistance range of $1k\Omega.\sim\!5k\Omega.$
Power supply	24V-COM	External+24V power supply	Provide +24V power supply to external unit, generally, it provides power supply to DI/DO terminals and external sensors. Maximum output current: 200mA
	PLC	Input terminal of external power supply	Connect to $\pm 24\text{V}$ by default when $\text{Sl}{\sim}\text{S8}$ need to be driven by external signal, PLC needs to be connected to external power supply and be disconnected from $\pm 24\text{V}$ power supply terminal.
	AI1-GND	Analog input termianl 1	1. Input voltage range: DC OV $\sim\!10\text{V}$ 2. Impedance: $22\text{k}\Omega$
Analog input	AI2-GND	Analog input termianl 2	1. Input range: DC OV \sim 10V/4mA - 20mA, decided by selection of P5-00.
	AI3-GND	Analog input termianl 3	2. Impedance: $22k\Omega$ (voltage input), 500Ω (current input)
	S1-COM	Digital input 1	
	S2-COM	Digital input 2	1. Optocoupler coupling isolation, compatible with
	S3-COM	Digital input 3	dual polarity input
Digital	S4-COM	Digital input 4	 Impedance: 2.4kΩ Voltage range for level input: 9V-30V
input	S5-COM	Digital input 5	4. S8 can be used for high-speed pulse input.
	S6-COM	Digital input 6	Maximum input frequency: 100kHz
	S7-COM	Digital input 7	
	S8-COM	Digital input 8	
Analog	AO1-GND	Analog output terminal 1	Voltage or current output is decided by P5-32.
output	AO2-GND	Analog output terminal 2	Output voltage range: OV~10V Output current range: OmA~20mA
	үз-үс	Digital output termianl 1	1. Optocoupler coupling isolation, dual polarity open collector output: 2. Output voltage range: $0{\sim}24$ V 3. Output current range: $0{\sim}50$ mA 4. Y4 is limited by F5-32 "HDO function enable".
Digital output	Ү4-ҮС	Digitaloutput termianl 2	4.14 IS Timited by F5-32 indo function enable. As high-speed pulse output, the maximum frequency is 50 kHz. 5. Select whether YC terminal and COM terminal are electrically connected through SW1.
	Y1A/Y1B/ Y1C	Relay digital output 1	Contact driving capacity: 250Vac, 3A, COSØ=0.4.
	Y2A/Y2C	Relay digital output 2	30Vdc, 1A
Commu- nication	DA, DB	RS485 interface	1. Standard RS485 communication interface; 2. Select whether to connect 120Ω termination resistor through SW2.

Analog input terminals (FS, FV, FI, FC)

- The connection with analog signal is especially easy to be influenced by the interference of external noise, thus the wire should be as short as possible (less than 20m), and shielding wire should be used. The outer wire mesh of the shielding wire should be basically grounded, but if the inducing noise is very loud, it is better to connect it to the FC terminal.
- ■For the need of using contact in this circuit, the double-fork contact which can process weak signals should be used. Besides, the terminal FC should not adopt contact control.
- ■While connecting with the external analog signal follower, sometimes the interference caused by the analog signal follower or the AC drive will lead to misoperation, in such conditions, the capacitor and the magnetic core of ferrite may be connected to the external analog follower, as shown below:

Go through in-phase and encirle 3 loops or above

Ferrite magnetic ring

Input terminals of contact (S1~S8)

■While controlling the input of contacts, in order to prevent bad contact, the contacts that have high reliability for the contact with weak signals should be used.

Output terminals of transistor (Y3,Y4)

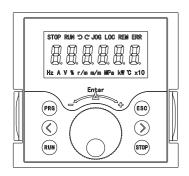
- ■The polarity of the external power supply should be correctly connected.
- ■While connecting the control relay, the surge absorber should be connected with the two ends of field coil. Please ensure that the polarity is correctly connected.

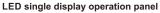
Others

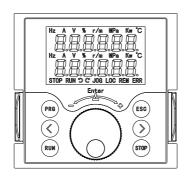
- ■It's best to use the shielding wires as control wires, the isolation network divested segment before the terminals should not be exposed.
- ■The wires of control terminals should keep away from the wires of the main loop, or misoperation may be caused due to noise interference. If an intersection is needed, make them intersect with a right angle.
- ■Generally the control wires don't have good insulation. If the insulation layer is broken due to some reason, high voltage may enter the control circuit (control panel), leading to circuit damage, equipment accidents or personal Danger.
- ■The control wires in the AC drive should be fixed properly to prevent them from the direct contact with the charge-carrying part of the main circuit (e.g. the terminal strips of the main circuit).

Description of Keys on the LED operation panel

EC6000


4. Basic operation and commissioning


4.1LED keyboard panel appearance and operation process


8 segment digital tube LED operation panel by six and seventeen leds, it can display the running condition of AC drives, running direction, alarm, forecasting warning information, panel/remote instruction, monitoring data, I/0 status, the parameters of the function of data set, etc.

The panel is detachable and isolated from the input potentiometer. The panel is allowed to be removed during operation, but it is not recommended to do so when running in relation to the panel, such as panel control running/stopping and setting the frequency.

LED operation panel(Factory standard panel is LED.)

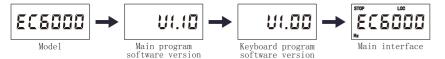
LED dual display operation panel

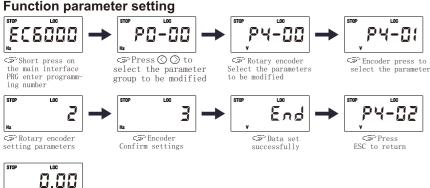
Description of LED operation panel indicators

Indicator	Description	Indicator	Description
STOP	motor STOP	RUN	motor RUN
5	motor reverse rotation	C	motor forward rotation
JOG	JOG state	LOC	control source as panel
REM	control mode set by the source of AO3	ERR	AC drive has failure
Нz	monitoring interface is frequency	A	monitoring interface is current
V	monitoring interface is voltage	%	monitoring interface for percentage display
r/m	monitoring interface is motor speed	Kw	monitoring interface is power
MPa	monitoring interface is MPa under monitor mode setting	°C	monitoring interface is temperature

Key	Function
PRG	Programming Set parameters
	Move left and right function keys
RUN	RUN key Forward RUN(FRD)
STOP	STOP key
0	Number INCREASE/DECEREASE and ENTER key
ESC	Exit and fault reset function

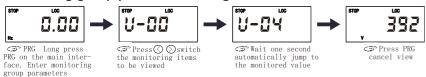
Use the panel encoder to set the frequency in the initial interface


In the initial interface, the encoder can be used to change the setting frequency, left to reduce the set frequency, right to add the set frequency, when you press down the encoder, enter the set frequency, so you can quickly modify the required frequency value.

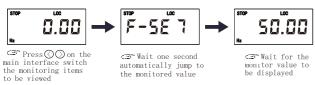

Monitoring content switching:

In the monitoring content screen, press the key $\bigcirc\bigcirc$ to switch the monitoring parameters. When typing, the code of the monitoring parameters will be displayed firstly, and then the parameter values will be displayed.

NO.	LED display	Item illustration
0	F-OUT → 50.00	Actual frequency output value
1	F-SET → 50.00	Actual frequency setting value
2	V-OUT → 380.0	Actual voltage output value
3	A-OUT → 11.0	Actual current output value
4	KVA → 7	Actual power output value
5	EDC \longrightarrow 540	DC current voltage inside AC drive
6	PID → 0.000	The current value of the closed-loop feedback
7	TEP → 37	AC drive radiator temperature
8	S1−8 → 111	S1-S8 outside terminal input, 1valid, dark invalid
9	Y1−Y4 → 11	Y1-Y4 outside terminal output, 1 valid, dark invalid
10	HOU → 103	AC drive total running or in power time(select by Pr-C31)
11	VER → 2.00	Control panel edition

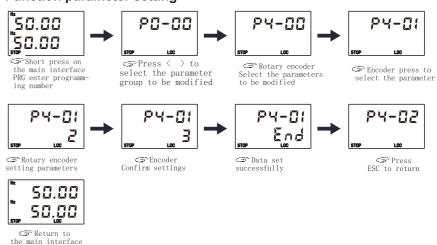

LED single display operation panelPower-on intreface

Return to the main interface


Monitoring group parameter setting

Return to the main interface

Main interface monitoring item switch



4 monitoring items in the main interface, which can be switched cyclically. Set the name of the item to be monitored through parameters P7-06 and P7-07

LED dual display operation panel Power-on display

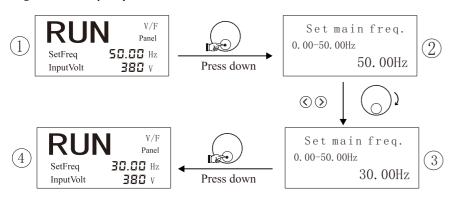
Function parameter setting

Digital display code comparison table

Text Content	0	1	2	3	4	5	6	7	8	9	A	В	С	D
LED Display		j	2	3	4	5	8	7	8	9	R	6	E	70
Text Content	Е	F	G	Н	Ι	K	0	Р	R	S	Т	U	V	Y
LED Display	E	F		X		F	0	P	r	5	ſ	H	U	y

4.2 LCD keyboard panel appearance and operation process

LCD operation panel

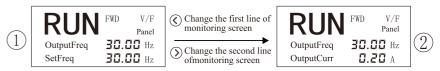

- ① FWD. REV shoaws the direction of rotation at run time.
- ② V/F motor control mode.

LCD keyboard operation process

The data on the panel are arranged in the menu and sub-menu, and the general operation can be conducted in the following way.

Setting of main frequency of panel

(e.g. the main frequency is altered to: 30. 00Hz)



Press enter under the initial screen ① to enter the frequency setting ②. In the frequency setting Screen ② press ③ and ③ keys to select the modify bit or ⑤ change the frequency from 5 to 3 according to the encoder setting, as shown in figure ③. Set the frequency press ⑥ to complete the setup, as shown in figure ④.

Switch of the monitored parameters

EC6000

(e.g. the monitored parameter is altered to: output current)

Press the ② and ③ buttons on screen ① to switch monitoring content as shown in figure ②.

Operations like parameter setting/ operation data/ maintenance information/ fault information/ data copy

Under the initial screen press (PRB) into the frame, the rotary encoder to select feature, press the key to enter the function menu, press the (ESB) key to exit to the initial screen, according to the rotary encoder switch pages, and (ESB) to exit the screen.

Content	LCD display	Function	
1.data setting	During installation, set AC motor drive	data to be proper value.	
2. monitor running	00 Set Frequency 30. 00Hz 01 Output Frequency 30. 00Hz 02 Output current 0. 21A 03 Output Volt 234V	Press or switch monitoring content	
3. fault record	First screen 1	Press 🕝 or 🔇 🔇 switch	
3. lauti record	Second screen 1		
4. data copy	Only one screen < DATA COPY> READ	Data copy and checking for batch AC motor driver data setting.	

4.3 Check and Test before Operation

The following matters should be paid attention before the operation:

- Check if wire connection is correct. Confirm AC drive output terminal U, V, W is not connected to POWER and the ground terminal E(G) is grounded well.
 - Confirm there is no short circuit within every terminal and electricity naked part.
 - Confirm all terminals connection and joints are tight and not loose
 - Ensure that the motor isn't connected with loaded machine.
- Before turning the power on, ensure that all the switches are in the disconnected state to guarantee that the AC drive won't start or operate abnormally when the power is on.
 - The power supply can only be turned on after the upper cover is installed.
 - It is forbidden to operate the switch with wet hand.
 - Display of the keypad panel (no indication of faults)
 - The cooling fan installed in the AC drive should work normally.

4.4 Running way

There are many running ways showed in "Chapter 4 CONTROL PANEL AND OPE-RATION" and Chapter5 "FUNCTION DATA ILLUSTRATION". Choose the best operation way according to actual need and running regulations. The common running ways are listed on figure.

Running way	Frequency setting	Running order
Key panel operation	Keyboard keys select or panel adjustment potentiometer	Press FWD or REV to START and STOP
Remote Control	Potentiometer or simulated voltage current	Input joint terminal S1-COM、 terminal S2-COM
Remote communication control method	Communication	Communication

4.5 Test Run

Refer to 4.3 inspection and preparation before operation and confirm that there is no abnormality, and then test operation can be carried out. When the product leaves the factory, it is set to the keyboard operation mode.

- 1. After the power supply is on, confirm that the LED displays the frequency 0.00Hz.
- 2. Use the key to set low frequency around 5Hz.
- 3. Press (START) or (STOP) to start and to low down and stop.
- 4. Check the following before running:

Check whether the rotation of motor is correct.

Check whether the rotation of motor is steady (without abnormal noise or vibration).

Check whether the acceleration / deceleration are steady.

If there is no abnormality, perform the test run with frequency increased.

If no abnormality happens in the test run above, the formal operation can be started.

Notice!

EC6000

If there is any abnormal phenomena occured , stop AC drive immediately. Consult "fault diagnosis" to find the problem. When AC drive stops, terminal L1/R1, L2/S, L3/T is still with power if main circuit is not switched off.

Any touch onto terminal U, V, W will be shocked. Besides, wave filter capacitor is still full of charging voltage and need certain period of time to discharge, if main circuit power is off. Touch inner AC drive circuit only after power and the DC circuit voltage tested by DC circuit voltage meter is below safety voltage.

Basic operation and commissioning

5. Function parameters description

5.1 P0 Standard Parameter group

P0-00	AC drive rated G/P type selection	Setting Range:0~1	Default:0
-------	-----------------------------------	-------------------	-----------

- **0:** Applicable to constant torque load with rated parameters specified, overload factor of AC drive is 150% of rated current for one minute.
- 1: Applicable to variable torque load (fan and pump) with rated parameters specified, overload factor of AC drive is 120% of rated current for one minute.

P0-01	Motor control mode	Setting Range:0 ~ 2	Default:0

0: V/F control

It is applicable to applications with low load requirements or applications where one AC drive operates multiple motors, such as fan and pump.

1: Sensorless flux vector control(SVC)

It indicates open-loop vector control, and is applicable to high-performance control applications such as machine tool, centrifuge, wire drawing machine and injection moulding machine. And one AC drive can operate only one motor.

2: Closed-loop vector control(FVC)

It is applicable to high-accuracy speed control or torque control applications such as high-speed paper making machine, crane and elevator. One AC drive can operate only one motor. An encoder must be installed at the motor side, and a PG card matching the encoder must be installed at the AC drive side.

Note: If vector control is used, motor auto-tuning must be performed because the advantages of vector control can only be utilized after correct motor parameters are obtained. Better performance can be achieved by adjusting speed regulator parameters in group P2.

For the permanent magnetic synchronous motor (PMSM), the EC6000 does not support SFVC. CLVC is used generally. In some low-power motor applications, you can also use V/F.

P0-02	Command source selection	Setting Range:0~4	Default:0

It is used to determine the input channel of the AC drive control commands, such as RUN, STOP, FORWARD RUN, REVERSE FUN and JOG RUNNING.

You can input the commands in the following three channels:

0: Operation panel control (LOC LED on)

Commands are given by pressing keys RUN and STOP on the operation panel.

1: Terminal control (REM LED on)

Commands are given by means of multifunctional input terminals with functions such as FWD, REV, TOGF, and TOGR.

2: Communication control (REM LED blinking)

Commands are given from host computer.

3: Option card ("REMOT" indicator blinking/on)

The operation command is controlled by the input signal of the external option card. For the installation method and parameter setting of the option card, please refer to the instruction manual of the option card.

4:Terminal switchover(REM LOC LED blinking)

The operation command is given by the control terminal switching, see "terminal function description" for details.

P0-03	Main frequency source X selection	Setting Range:0~12	Default:0

0: Digital setting

The initial value of the set frequency is the value of PO-08 (Preset frequency). You can change the set frequency by pressing \blacktriangle and \blacktriangledown on the operation panel (or using the UP/DOWN function of input terminals). When the AC drive is powered on again after power failure, the set frequency is the value memorized at the moment of the last power failure, you can change the set frequency by pressing \blacktriangle and \blacktriangledown on the operation panel or the terminal UP/DOWN correction is memorized.

1: AI1

2: AI2

3: AI3

AI1 (0-10 V voltage input)

AI2/AI3(0-10 V voltage input or 4mA-20mA current input, determine by parameter. see "function description of analog terminal parameters" for details.

4: Pulse setting (HDI)

The frequency is set by HDI (high-speed pulse).

The signal specification of pulse setting is 9-30 V (voltage range) and 0-50 kHz (frequency range). The corresponding value 100% of pulse setting corresponds to the value of S8.For the relationship between the input pulse frequency of HDI terminal and the corresponding setting, see "functional description of input terminals" for details.

5: Communication setting

The frequency is set by means of communication.

If the AC drive is in point-point communication and receives data as the frequency source, data transmitted by the master is used as the set frequency. For details, see the description of group PB.

6: UP/DOWN control

The given frequency of the main channel is controlled by the "UP" terminal and the "DW" terminal set by the multi-functional terminal (S1-S8) and the on-off between the (COM) terminal; any end of the multi-functional terminal (X1-X8) can be defined as "UP" terminal and "DW" terminal respectively. See "functional description of input terminal parameters" for details.

7: PID

The output of PID control is used as the running frequency. PID control is generally used in on-site closed-loop control, such as constant pressure closed-loop control and constant tension closed-loop control.

When applying PID as the frequency source, you need to set parameters of "PID Function" in group PA.

8: PLC mode operation setting

When the simple programmable logic controller (PLC) mode is used as the frequency source, the running frequency of the AC drive can be switched over among the 15 frequency references. You can set the holding time and acceleration/deceleration time of the 15 frequency references. For details, refer to the descriptions of Group FD.

9-10: Reserved

11:Option card

The operation command is controlled by the input signal of the external option card. For the installation method and parameter setting of the option card, please refer to the instruction manual of the option card.

12:Terminal switchover

The main channel of frequency setting is selected by "Frequency selection terminal", and "Frequency selection terminal" can be defined by any multi-

functional terminal, see parameters [P2.00-P2.07]; the corresponding rela-tionship between terminal status and frequency setting channel is shown in the table below:

Note: In multi-reference mode, combinations of different DI terminal states correspond to different set frequencies. The EC6000 supports a maximum of 16 speeds implemented by 16 state combinations of four DI terminals (allocated with functions 16 to 19) in Group PD, PO-02 specifies the setting value of multi-stage speed 0, and other 1-15 multi-stage speed can correspond to any 15 "multi-reference" by FD group function code, the multiple references indicate percentages of the value of PO-10 (Maximum frequency).

If a DI terminal is used for the multi-reference function, you need to perform related setting in group P4, for details, refer to the descriptions of group related functional parameters.

P0-04 Main frequency source X Gain Setting Range: 0.000 ~ 5.000 Default: 1.000

It is used to amplify or reduce the input signal of the main channel with a given frequency. The given frequency value of the main channel can be adjusted in proportion.

P0-05 Auxiliary frequency source Y selection Setting Range: 0 ~ 12 Default: 0

When used as an independent frequency input channel (frequency source switched over from X to Y), the auxiliary frequency source Y is used in the same way as the main frequency source X (refer to PO-O3). When the auxiliary frequency source is used for operation (frequency source is "X and Y operation"), the main frequency source X and auxiliary frequency source Y must not use the same channel. That is, PO-O3 and PO-O5 cannot be set to the same value. Otherwise, it may cause confusion.

P0-06	Auxiliary source Y Gain	Setting Range: 0.000 ~ 5.000	Default: 1.000
-------	-------------------------	------------------------------	----------------

It is used to amplify or reduce the input signal of the main channel with a given frequency. The given frequency value of the main channel can be adjusted in proportion.

P0-07	Main and auxiliary frequency source combination mode	Setting Range:0~7	Default: 0

0: Main frequency source X

Only [PO. 03] is valid, and [PO. 05] is invalid

1: Auxiliary frequency source Y

Only [PO. 05] is valid, and [PO. 03] is invalid

2: X+Y

Given frequency of main channel [PO.03]+Given frequency of auxiliary channel [PO.05]=output frequency of AC drive

3: X-Y

Given frequency of main channel [PO.03]-Given frequency of auxiliary channel [PO.05]-output frequency of AC drive

4: MAX(|X|,|Y|)

MAX(|PO.03|, |PO.05|), The larger one is the output frequency of AC drive

5: MIN(|X|,|Y|)

MIN(PO.03, PO.05), The smaller one is the output frequency of AC drive

6: X*Y/Main channel

[P0.03] by a percentage, which is equal to the percentage of the given frequency of auxiliary channel [P0.05] relative to the maximum frequency of [p0.10]. The product of the two is the output frequency of the AC drive.

7: Any non-zero value of the main frequency source X and auxiliary frequency source Y is valid, and the primary channel takes precedence.

P0-08		Setting Range: 0.00 ~ Maximum output frequency	Default:
	A requeriey	Maximum output frequency	30.00112

Used to set and modify the set main frequency of keyboard number when frequency set passageway is keyboard number setting. If the bit 0 of parameter [P7-03] is "1", this can quickly modify the value of this parameter through up/down key on keyboard.

DO 00	Digital setting of auxiliary source X frequency	Setting Range: 0.00 ~	Default:
PU-09	X frequency	Maximum output frequency	50.00Hz

Used to set and modify the set sub frequency of keyboard number when frequency set passageway is keyboard number setting. If the bit 0 of parameter [P7-03] is "2", this can quickly modify the value of this parameter through up/down key on keyboard.

P0-10 Maximum output frequency	Setting Range: 0.000 ~ 320.00Hz	Default: 50.00Hz
--------------------------------	------------------------------------	---------------------

The maximum frequency limit allowed by the AC drive; When [P6-11] BIT 0 is set to "1".it is also the acceleration and deceleration time reference.

P0-11	Source of frequency upper limit selection	Setting Range: 0 ~ 5	Default: 0
-------	---	----------------------	------------

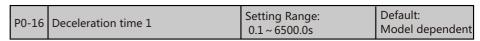
It is used to set the source of the frequency upper limit, including digital setting (PO-12), including pulse setting or communication setting. If the frequency upper limit is set by means of AI1, AI2, AI3, DI5 or communication, the setting is similar to that of the main frequency source X. For details, see the description of PO-03.

For example, to AC drive runaway in torque control mode in winding application, you can set the frequency upper limit by means of analog input. When the AC drive reaches the upper limit, it will continue to run at this speed.

P0-12	Frequency upper limit digital setting	Setting Range:	Default: 100.0%
		0~100.0%	100.0%

This parameter is used to set the frequency upper limit, setting range P0-13~P0-10.

P0-13	Frequency lower limit digital setting	Setting Range: 0 ~ 100.0%	Default: 0.0%
-------	---------------------------------------	------------------------------	------------------


If the frequency reference is lower than the value of this parameter, the AC drive can stop, run at the frequency lower limit, or run at zero speed, determined by PO-14.

Tro I Triviagative Control Minister Triviagative I Delidant. I	P0-14	Frequency lower limit run mode	Setting Range: 0~2	Default: 1
--	-------	--------------------------------	--------------------	------------

It is used to set the AC drive running mode when the set frequency is lower than the frequency lower limit. The EC6000 provides three running modes to satisfy requirements of various applications.

P0-15 Acceleration time 1	Setting Range: 0.1 ~ 6500.0s	Default: Model dependent
---------------------------	---------------------------------	-----------------------------

Acceleration time indicates the time required by the AC drive to accelerate from 0 Hz to "Acceleration/Deceleration base frequency" (P6-11), that is, t1 in Figure 6-1.

Deceleration time indicates the time required by the AC drive to decelerate from "Acceleration/Deceleration base frequency" (P6-11) to 0 Hz, that is, t2 in Figure 6-1.

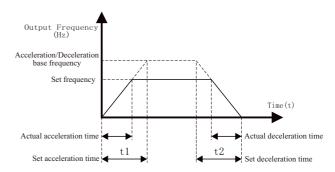


Figure 6-1 Acceleration/Deceleration time

P0-17	Acceleration/Deceleration time unit	Setting Range: 1 ~ 2	Default: 1

To satisfy requirements of different applications, the EC6000 provides two acceleration/deceleration time units, 0.1s and 0.01s.

	P0-18 Stopping method	Setting Range: 0 ~ 1	Default: 0
0: Ramp to stop		1: Coast to stop	

P0-19 Rotation direction selection Setting Range: 0000 ~ 0011	Default: 00
---	-------------

BIT0:

0: Forward direction operation 1: Reverse direction operation

You can change the rotation direction of the motor just by modifying this parameter without changing the motor wiring. Modifying this parameter is equivalent to exchanging any two of the motor's U, V, W wires.

Note: The motor will resume running in the original direction after parameter initialization. Do not use this function in applications where changing the rotating direction of the motor is prohibited after system commissioning is complete.

BIT1:

0: Reverse operation enable

1: Reverse operation disable

It is used to set whether the AC drive allows reverse rotation. In the applications where reverse rotation is prohibited, set the bit lof PO-19 to 1.

P0-20	Carrier frequency	Setting Range: 1.0 ~ 15.0kHz	Default: Model dependent
-------	-------------------	------------------------------	-----------------------------

It is used to set the switching frequency of IGBT of AC drive. Please set this parameter when adjusting motor noise and reducing leakage current. This function is mainly used to improve the noise and vibration that may occur in the operation of the AC drive. When the carrier frequency is high, the current waveform is ideal and the motor noise is low. It is very suitable for places where silence is required. But at this time, the switch loss of the main components is large, the whole machine is hot, the efficiency is reduced, and the output is reduced. At the same time, the radio interference is large, the other problem of high carrier frequency operation is the increase of capacitive leakage current, which may cause its misoperation or over-current when the leakage protector is installed. When the carrier frequency is low, it is opposite to the above phenomenon.

Function parameters description

The response of different motors to carrier frequency is also different. The best carrier frequency also needs to be adjusted according to the actual situation. But with the increase of motor capacity, the carrier frequency should be smaller.

Tip: In order to obtain better control characteristics, the ratio of carrier frequency to the highest operating frequency of the AC drive is recommended not to be less than 36. If the AC drive works in the low frequency band for a long time, it is recommended to reduce the carrier frequency to reduce the influence of dead time.

Note: When the carrier frequency is higher than the factory set value, the rated power of the AC drive shall be reduced by 5% for every 1kHz carrier frequency increased. Our company reserves the right to limit the maximum carrier frequency. Adjusting the carrier frequency will affect the following performance:

Carrier frequency	Low → High
Motor noise	Large → Small
Output current waveform	Bad → Good
Motor temperature rise	High → Low
AC drive temperature rise	Low → High
Leakage current	Small → Large
External radiation interference	Small → Large

P0-21	Carrier frequency accuracy unit	Setting Range: 1~2	Default: 2

This parameter used to confirm all resolution ratio of function code which relate to frequency.

The max output frequency of EC6000 can reach up to $3200 \mathrm{Hz}$ when the frequency resolution is 0.1Hz, but when frequency resolution is 0.01Hz then the max output frequency is $320.00 \mathrm{Hz}$.

P0-22	Reserved	Setting Range: -	Default: -	
P0-23	Restore default settings	Setting Range: 0 ~ 210	Default: 0 ~ 210	

- 0: No operation
- 1: Data locked
- 2: Reset Error message
- 3~6: Undefined

7: Initialization setting-User data reset

If P0-23 is set to (1/7), most function codes are restored to the default settings except fault records, accumulative running time, accumulative power-on time and accumulative power. consumption.

10: Back up current user parameters

If PO-23 is set to 10, the previous backup user parameters are restored.

210: Restore user backup parameters

If PO-23 is set to 210, the current parameter settings are backed up, helping you to restore the setting if incorrect parameter setting is performed.

5.2 P1 Motor Parameter

P1-0	Motor parameters	Setting Range: 0~3	Default: 0
	The same particular and the sa	3 3	20.00.00

To achieve better V/F or vector control performance, motor auto-tuning is required.

0: No auto-tuning Auto-tuning is prohibited.

1: Asynchronous motor static auto-tuning

It is applicable to scenarios where complete auto-tuning cannot be performed because the asynchronous motor cannot be disconnected from the load. Before performing static auto-tuning, properly set the motor type and motor nameplate parameters of P1-01-00 to P1-06 first. The AC drive will obtain parameters of P1-06 to P1-08 by static auto-tuning.

Set this parameter to 1, and press RUN. Then, the AC drive starts static autotuning.

2: Asynchronous motor (rotational) complete auto-tuning

To perform this type of auto-tuning, ensure that the motor is disconnected from the load. During the process of complete auto-tuning, the AC drive performs static auto-tuning first and then accelerates to 80% of the rated motor frequency within the acceleration time set in PO-15. The AC drive keeps running for a certain period and then decelerates to stop within deceleration time set in PO-16. Before performing complete auto-tuning, properly set the motor type, motor nameplate parameters of P1-01 to P1-06, "Encoder type" (P1-23) and "Encoder pulses perrevolution" (P1-24) first. ABZ incremental encoder" (P1-23) and vector control current loop PI parameters of P2-14 to P2-17 by complete auto-tuning.

Set this parameter to 2, and press RUN . Then, the AC drive starts complete autotuning.

3: Reserved

_		

Function parameters description

P1-01	Motor type	Setting Range: 0∼2	Default: 0
P1-02	Motor rated power	Setting Range: 0.1Kw~1000.0kW	Default: Model dependent
P1-03	Motor rated voltage	Setting Range: 1V ~ 2000V	Default: Model dependent
P1-04	Rated motor current	Setting Range: Model dependent	Default: Model dependent
P1-05	Rated motor frequency	Setting Range: 0. 01Hz~Maximum frequency	Default: Model dependent
P1-06	Rated motor rotational speed	Setting Range: 1rpm~65535rpm	Default: Model dependent

Set the parameters according to the motor nameplate no matter whether V/F control or vector control is adopted. The motor auto-tuning accuracy depends on the correct setting of motor nameplate parameters.

P1-07	Stator resistance (asynchronous motor)	Setting Range:	Default: Model dependent
P1-08	Rotor resistance (asynchronous motor)	Model dependent	Default: Model dependent
P1-09	Leakage inductive reactance (asynchronous motor)	Setting Range:	Default: Model dependent
P1-10	Mutual inductive reactance (asynchronous motor)	Model dependent	Default: Model dependent
P1-11	No-load current (asynchronous motor)	Setting Range: Model dependent	Default: Model dependent

The parameters in F1-07 to F-11 are asynchronous motor parameters. These parameters are not found on the on the motor nameplate and are obtained by means of motor autotuning. Only F1-07 to F1-09 can be obtained through static motor auto-tuning. Through complete motor auto-tuning, encoder phase sequence and current loop PI can be obtained besides the parameters in F1-06 to F1-10. If it is impossible to perform motor autotuning on site, manually input the values of these parameters according to data provided by the motor manufacturer.

P1-23 Encoder type Setting Range:0000 ~ 0214 Default: 000

BIT0:Encoder type

The EC6000 supports multiple types of encoder. Different PG cards are required for different types of encoder. Select the appropriate PG card for the encoder used. Any of the five encoder types is applicable to synchronous motor. Only ABZ incremental encoder and resolver are applicable to asynchronous motor.

After installation of the PG card is complete, set this parameter properly based on the actual condition. Otherwise, the AC drive cannot run properly.

BIT1:A/B phase sequence of ABZ incremental encoder

This parameter is valid only for ABZ incremental encoder and is used to set the A/B phase sequence of the ABZ incremental encoder.

BIT2:U, V, W phase sequence of UVW encoder

These two parameters can be obtained by synchronous motor no-load auto-tuning or with-load auto-tuning. They are valid only when the UVW encoder is applied to a synchronous motor.

BIT3:PG coder connect in source

0: Local PG, 1: expanding PG, 2: PULSE input(s8)

P1-24	Encoder pulses per revolution	Setting Range:0 ~ 60000	Default: 1024

This parameter is used to set the pulses per revolution (PPR) of ABZ or UVW incremental encoder. In CLVC mode, the motor cannot run properly if this parameter is set incorrectly.

P1-25	Encoder installation angle	Setting Range:0.0 ~ 359. 9°	Default: 0.0°

This parameter is applicable only to synchronous motor. It is valid for ABZ incremental encoder, UVW incremental encoder, resolver and wire-saving UVW encoder, but invalid for SIN/COS encoder. It can be obtained through synchronous motor no-load auto-turning or with-load auto-tuning. After installation of the synchronous motor is complete, the value of this parameter must be obtained by motor auto-tuning. Otherwise, the motor cannot run properly.

P1-2	6 UVW encoder angle offset	Setting Range: 0.0 ~ 359. 9°	Default: 0.0°

They can be obtained by synchronous motor no-load auto-tuning or with-load auto-tuning. After installation of the synchronous motor is complete, the values of these two parameters must be obtained by motor auto-tuning. Otherwise, the motor cannot run properly.

P1-27 Number of pole pairs of resolver	Setting Range: 1 ~ 100	Default: 1
--	------------------------	------------

If a resolver is applied, set the number of pole pairs properly.

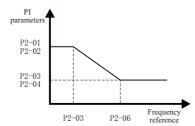
P1-28 PG wire-break fault detection time | Setting Range: 0.00 ~ 60. 00s | Default: 2.00s

This parameter is used to set the time that a wire-break fault lasts. If it is set to 0.0s, the AC drive does not detect the encoder wire-break fault. If the duration of the encoder wire-break fault detected by the AC drive exceeds the time set in this parameter, the AC drive reports Err20.

5.3 P2: Vector Control Parameters

Group P2 is valid for vector control, and invalid for V/F control.

P2-00 Vector Control Mode	Setting Range: 0000 ~ 0001	Default: 0001
---------------------------	----------------------------	---------------


Optimization mode 1:used when there is a higher torque control linearity requirement

P2-01	Speed loop proportional gain 1	Setting Range: 1~100	Default: 30
P2-02	Speed loop integral time 1	Setting Range: 0.01s ~ 10.00s	Default: 0.50s
P2-03	Switchover frequency 1	Setting Range: 0.00 ~ P2-06	Default: 5.00Hz
P2-04	Speed loop proportional gain 2	Setting Range:1 ~ 100	Default: 20
P2-05	Speed loop integral time 2	Setting Range: 0.01s~10.00s	Default: 1.00s
P2-06	Switchover frequency 2	Setting Range: P2-03 ~ Maximum frequency	Default: 10.00Hz

Speed loop PI parameters vary with running frequencies of the AC drive.

- If the running frequency is less than equal to "Switchover frequency 1" (P2-03), the speed loop PI parameters are P2-01 and P2-02.
- If the running frequency is equal to or greater than "Switchover frequency 2", the speed loop PI parameters are P2-04 and P2-05.
- If the running frequency is between land 2, the speed loop PI parameters are obtained from the linear switchover between the two groups of PI parameters, as shown in Figure 6-2.

Figure 6-2 Relationship between running frequencies and PI parameters

EC6000

Figure 6-2 Relationship between running frequencies and PI parameters

The speed dynamic response characteristics in vector control can be adjusted by setting the proportional gain and integral time of the speed regulator. To achieve a faster system response, increase the proportional gain and reduce the integral time. Be aware that this may lead to system oscillation.

The recommended adjustment method is as follows: If the factory setting cannot meet the requirements, make proper adjustment. Increase the proportional gain first to ensure that the system does not oscillate, and then reduce the integral time to ensure that the system has quick response and small overshoot.

Note: Improper PI parameter setting may cause too large speed overshoot, and overvoltage fault may even occur when the overshoot drops.

P2-07 \	Vector control slip gain	Setting Range: 50% ~ 200%	Default: 100%
---------	--------------------------	---------------------------	---------------

For SFVC, it is used to adjust speed stability accuracy of the motor. When the motor with load runs at a very low speed, increase the value of this parameter; when the motor with load runs at a very large speed, decrease the value of this parameter. For CLVC, it is used to adjust the output current of the AC drive with same load.

D2 00	Time constant of	Catting Bangas 0.001s 1.000s	D (11 0 1
P2-08	speed loop filter	Setting Range: 0.001s ~ 1.000s	Default: 0.1s

In the vector control mode, the output of the speed loop regulator is torque current reference. This parameter is used to filter the torque references. It need not be adjusted generally and can be increased in the case of large speed fluctuation. In the case of motor oscillation, decrease the value of this parameter properly.

If the value of this parameter is small, the output torque of the AC drive may fluctuate greatly, but the response is quick.

P2-09	Vector control over-excitation gain	Setting Range: 0 ~ 200	Default: 64
-------	-------------------------------------	------------------------	-------------

During deceleration of the AC drive, over-excitation control can restrain rise of the bus voltage to avoid the over-voltage fault. The larger the over-excitation gain is, the better the restraining effect is.

Increase the over-excitation gain if the AC drive is liable to over-voltage error during deceleration. Too large over-excitation gain, however, may lead to an increase in output current. Therefore, set this parameter to a proper value in actual applications.

Set the over-excitation gain to 0 in applications of small inertia (the bus voltage will not rise during deceleration) or where there is a braking resistor.

Default: 0

P2-10	Torque upper limit source in speed control mode	Setting Range: 0 ~ 7	Default: 0
P2-11	Digital setting of torque upper limit in speed control mode	Setting Range: 0.0% ~ 200.0%	Default: 150.0%

In the speed control mode, the maximum output torque of the AC drive is restricted by P2-10.

If the torque upper limit is analog, pulse or communication setting, 100% of the setting corresponds to the value of P2-10, and 100% of the value of P2-11 corresponds to the AC drive rated torque.

For details on the AI1, AI2 and AI3 setting, see the description of the AI curves in group P4.

For details on the pulse setting, see the description.

P2-18 | Speed loop integral property | Setting Range: 0 ~ 1

When the AC drive is in communication with the master, if it is currently a point-to-point communication slave and receives data as torque timing, the torque digital setting is sent directly by the host. For details, refer to the introduction of A8 group point-to-point communication.

In other conditions, the host computer writes data -100.00% to 100.00% by the communication address 0x2009, where 100.0% corresponds to the value of P2-11.

P2-14	Current loop of M-axis Kp	Setting Range: 0 ~ 6000	Default: 2000
P2-15	Current loop of M-axis Ki		Default: 1300
P2-16	Current loop of T-axis Kp		Default: 2000
P2-17	Current loop of T-axis Ki		Default: 1300

These are current loop PI parameters for vector control. These parameters are automatically obtained through "Asynchronous motor complete auto-tuning" or "Synchronous motor no-load auto-tuning", and need not be modified.

The dimension of the current loop integral regulator is integral gain rather than integral time. Note that too large current loop PI gain may lead to oscillation of the entire control loop. Therefore, when current oscillation or torque fluctuation is great, manually decrease the proportional gain or integral gain here.

			Delaart. 0
Inte	gral separation 0: invalid 1:	valid	
P2-19	Field weakening mode of synchronous motor	Setting Range: 0 ~ 2	Default: 1
P2-20	Field weakening depth of synchronous motor	Setting Range:0~1	Default: 0
P2-21	Maximum field weakening current	Setting Range: 100% ~ 110%	Default: 105%
P2-22	Field weakening automatic adjustment gain	Setting Range: 50% ~ 200%	Default: 100%
P2-23	Field weakening integral multiple	Setting Range: 0~1	Default: 0

These parameters are used to set field weakening control for the synchronous motor.

If P2-19 is set to 0, field weakening control on the synchronous motor is valid. In this case, the maximum rotational speed is related to the AC drive bus voltage. If the motor's maximum rotational speed cannot meet the requirements, invalid the field weakening function to increase the speed.

The EC6000 provides two field weakening modes: direct calculation and automatic adjustment.

In direct calculation mode, directly calculate the demagnetized current and manually adjust the demagnetized current by means of P2-20. The smaller the demagnetized current is, the smaller the total output current is. However, the desired field weakening effect may not be achieved.

In automatic adjustment mode, the best demagnetized current is selected automatically. This may influence the system dynamic performance or cause instability.

The adjustment speed of the field weakening current can be changed by modifying the values of P2-22 and P2-23. A very quick adjustment may cause instability. Therefore, generally do not modify them manually.

5.4 P3: V/F Control Parameters

Group F3 is valid only for V/F control.

The V/F control mode is applicable to low load applications (fan or pump) or applications where one AC drive operates multiple motors or there is a large difference between the AC drive power and the motor power.

P3-00 Vector control slip gain Setting Range: 0 ~ 11 Default: 0

0: Linear V/F

It is applicable to common constant torque load.

1: Set P0-03 ~ P30-06 parameters to obtain any V/F relationship curve.

2: Square V/F

It is applicable to centrifugal loads such as fan and pump.

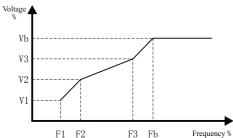
3~8: V/F curve between linear V/F and square V/F

10: V/F complete separation

In this mode, the output frequency and output voltage of the AC drive are independent. The output frequency is determined by the frequency source, and the output voltage is determined by "Voltage source for V/F separation" (F3-13). It is applicable to induction heating, inverse power supply and torque motor control.

11: V/F half separation

In this mode, V and F are proportional and the proportional relationship can be set in P3-13. The relationship between V and F are also related to the rated motor voltage and rated motor frequency in Group F1.


Assume that the voltage source input is X (0 to 100%), the relationship between V and F is:

 $V/F = 2 \times X \times (Rated motor voltage) / (Rated motor frequency)$

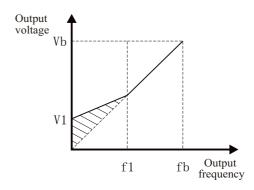
P3-01	Multi-point V/F frequency 1 (F1)	Setting Range: 0.0 ~ P3-03	Default: 1.00Hz
P3-02	Multi-point V/F voltage 1 (V1)	Setting Range: 0.0 ~ P3-04	Default: 3%
P3-03	Multi-point V/F frequency 2 (F2)	Setting Range: P3-01 ~ P3-05	Default: 25.00Hz
P3-04	Multi-point V/F voltage 2 (V2)	Setting Range: P3-02 ~ P3-06	Default: 50%
P3-05	Multi-point V/F frequency 3 (F3)	Setting Range: P3-03 ~ Maximum frequency	Default: 50.00Hz
P3-06	Multi-point V/F voltage 3 (V3)	Setting Range: P3-04 ~ 100.0%	Default: 100%

These six parameters are used to define the multi-point V/F curve. The multi-point V/F curve is set based on the motor's load characteristic. The relationship between voltages and frequencies is: V1 \leq V2 \leq V3, F1 \leq F2 \leq F3

At low frequency, higher voltage may cause overheat or even burnt out of the motor and over-current stall or over-current protection of the AC drive.

V1-V3: 1st,2nd and 3rd voltage percentages of multi-point V/F F1-F3: 1st,2nd and 3rd frequency percentages of multi-point V/F Vb: Rated motor voltage Fb: Rated motor running frequency Figure 6-4 Setting of multi-point V/F curve

P3-07	VF Torque boost	Setting Range: 0.0 ~ 30.0%	Default: 1.0%
P3-08	Cut-off frequency of torque boost	Setting Range: 0.00Hz ~ Maximum frequency	Default: 50.00Hz


To compensate the low frequency torque characteristics of V/F control, you can boost the output voltage of the AC drive at low frequency by modifying torque boost.

If the torque boost is set to too large, the motor may overheat, and the AC drive may suffer over-current.

If the load is large and the motor startup torque is insufficient, increase the value of torque boost.

If the load is small, decrease the value of torque boost. If it is set to 0.0, the AC drive performs automatic torque boost. In this case, the AC drive automatically calculates the torque boost value based on motor parameters including the stator resistance.

Cut-off frequency of torque boost specifies the frequency under which torque boost is valid. Torque boost becomes invalid when this frequency is exceeded, as shown in the following figure.

V1: Voltage of manual torque boost

Vb: Maximum output voltage

fl: Cutoff frequency of manual frequency boost

fb: Rated running frequency

P3-09	Online torque compensation gain	Setting Range: 80 ~ 150	Default: 100
P3-10	V/F slip compensation	Setting Range: 0.0 ~ 200.0%	Default: 0.0%
P3-11	Slip compensation time constant	Setting Range: 0.1 ~ 10.0s	Default: 0.5s
P3-12	Over excitation gain	Setting Range: 0 ~ 2.00	Default: 0.64
P3-13	V/F oscillation suppression gain	Setting Range: 0 ~ 1000	Default: Model dependent
P3-14	Oscillation suppression mode selection	Setting Range: 0 ~ 4	Default:3
P3-15	Voltage source for V/F separation selection	Setting Range: 0 ~ 8	Default: 0

V/F separation is generally applicable to scenarios such as induction heating, inverse power supply and motor torque control.

If V/F separated control is valid, the output voltage can be set in P3-14 or by means of analog, multi-reference, simple PLC, PID or communication. If you set the output voltage by means of non-digital setting, 100% of the setting corresponds to the rated motor voltage. If a negative percentage is set, its absolute value is used as the effective value.

0: Digital setting (P3-14)

The output voltage is set directly in P3-14.

1: Al1; 2: Al2; 3: Al3

The output voltage is set by AI terminals.

4: Pulse setting (S8)

The output voltage is set by pulses of the terminal S8. Pulse setting specification: voltage range 9-30 V, frequency range 0-50 kHz.

5: Multi-reference

If the voltage source is multi-reference, parameters in group P4 and PD must be set to determine the corresponding relationship between setting signal and setting voltage. 100.0% of the multi-reference setting in group PD corresponds to the rated motor voltage.

6: Simple PLC

If the voltage source is simple PLC mode, parameters in group ${\tt FD}$ must be set to determine the setting output voltage.

7: PID

The output voltage is generated based on PID closed loop. For details, see the description of PID in group FA.

8: Communication setting

The output voltage is set by the host computer by means of communication. The voltage source for V/F separation is set in the same way as the frequency source. For details, see PO-03. 100.0% of the setting in each mode corresponds to the rated motor voltage. If the corresponding value is negative, its absolute value is used.

P3-16	Voltage digital setting for V/F separation	Setting Range: 0.0 ~ rated motor voltage	Default: 0V
P3-17	Voltage decline time of V/F separation	Setting Range: 0.1s ~ 1000.0s	Default: 10.0s
P3-18	Voltage deceleration time of V/F separation	Setting Range: 0.1s ~ 1000.0s	Default: 10.0s

The voltage acceleration time of VF separation refers to the time required for the output voltage to accelerate from 0 to rated voltage of the motor, see t1 in the figure.

The voltage deceleration time of VF separation refers to the time required for the output voltage to deceleration from the rated voltage of the motor to 0, see t2 in the figure.

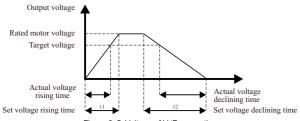


Figure 6-5 Voltage of V/F separation

P3-19	V/F separation shutdown mode	Setting Range: 0~1	Default: 0
P3-20	Over current stall action current	Setting Range: 50 ~ 200%	Default: 150%
P3-21	Over current stall suppression enable	Setting Range: 0 ~ 1	Default: 1
P3-22	Over current stall suppression gain	Setting Range: 0 ~ 100	Default: 20
P3-23	Stall current compensation factor	Setting Range: 50 ~ 200%	Default: 50%
P3-24	Over voltage stall action voltage	Setting Range: 200.0V ~ 2000.0V	Default: Model dependent
P3-25	Over voltage stall enable	Setting Range: 0~1	Default: 1
P3-26	Overvoltage stall frequency gain	Setting Range: 0 ~ 100	Default: 30
P3-27	Overvoltage stall voltage gain	Setting Range: 0 ~ 100	Default: 30
P3-28	Overvoltage stall maximum frequnency	Setting Range: 0V ~ 50Hz	Default: 5Hz
P3-29	Automatic upscaling enable	Setting Range: 0~1	Default: 0
P3-30	Minimum electric torque current	Setting Range: 0A ~ 64A	Default: 32A
P3-31	Minimum generation torque current	Setting Range: 0 ~ 100%	Default: 20%
P3-32	Automatic up- scaling KP	Setting Range: 0 ~ 100	Default: 30
P3-33	Automatic up- scaling KI	Setting Range: 0 ~ 100	Default: 30

- 47 -

5.5 P4: Input Terminals function group

The EC6000 provides eight S-terminals (S8 can be used for high-speed pulse input), 4 pieces multiple function digit output terminals(among, need be used to as high speed pulse output terminals).

P4-00	S1 Function		Default: 1 Forward RUN (FWD)
P4-01	S2 Function	Setting Range: 0 ~ 56	Default: 2 Reverse RUN (REV)
P4-02	S3 Function		Default: 4 Forward JOG (FJOG)
P4-03	S4 Function		Default: 5Reverse JOG (RJOG)
P4-04	S5 Function		Default: 6 Coast to stop
P4-05	S6 Function		Default: 8 Fault reset (RESET)
P4-06	S7 Function		Default: 10 Terminal UP
P4-07	S8 Function		Default: 11 Terminal DOWN

The following table lists the functions available for the DI terminals.

Value	Function	Description	
0	No Output	The output terminal has no function.	
1	Forward RUN(FWD)	It indicates that the AC drive is in the state of F	
2	Reverse RUN(REV)	OR REV, and has output frequency(can be 0), at this time, it output "ON" signal.	
3	Fault output 1 (No action during self recovery	When the AC drive fails and stops, it will not action during self recovery, and will output "ON" signal after exceeding the self recovery times.	
4	Fault alarm 2 (Action during self recovery	When the AC drive breaks down and stops, it will output terminal "ON" immediately.	
5	Ready for RUN	When the power supply of the main circuit and control circuit of the AC drive has been stable, and the AC drive has not detected any fault information, and the AC drive is in the operational state, it will output "ON" signal.	
6	Frequency reached	Refer to P8-19 for instructions.	
7	Frequency-level detection FDT1 output	Refer to P8-15, P8-16 for instructions.	
8	Frequency-level detection FDT2 output	Refer to P8-17, P8-18 for instructions.	
9	Frequency upper limit reached	When the AC drive operates at the upper limit frequency, it will output effective signal.	
10	Frequency upper lower reached	When the AC drive operates at the lower limit frequency, it will output effective signal.	
11	Current 1 reached	Refer to P8-20, P8-21 for instructions.	
12	Current 2 reached	Refer to P8-22, P8-23 for instructions.	
13	Zero current output	Refer to P8-24, P8-25 for instructions.	

14	Output current out of limit	Refer to P8-26, P8-27 for instructions.
15	Torque limited	In the speed control mode, when the output torque reaches the limit value, the AC drive is in stall protection state and output "ON" signal at the same time.
16	OL1 motor overload pre-warning	Before the motor overload protection acts, it is judged according to the threshold value of overload pre-warning, and outputs "ON" signal after exceeding the pre-warning threshold. Motor overload parameter setting parameter code P9-33.
17	OL2 AC drive overload pre-warning	10s before the overload protection of AC drive, the "ON" signal is output.
18	Zero-speed running (no output at stop)	Output frequency is O.
19	Acceleration running	Frequency output increasing.
20	Deceleration running	Frequency output decreasing.
21	DC breaking	Output DC breaking
22	PLC step completed	When the end of a stage of program running, 500ms effective signal is output.
23	PLC cycle completed	When the end of a cycle of program running, 500ms effective signal is output.
24	Reserved	
25	Running time reached	When the starting operation time of AC drive exceeds the time set by P8-29, the "ON" signal is output.
26	Set count value reached	When the AC drive reaches the timing time, the port outputs an effective pulse signal with the width of 1 second. Refer to P8-30, P8-31 for instructions.
27	Maximum count value reached	When the count reaches the maximum value of P8-32, the terminal outputs a valid signal whose width is equal to external clock cycle, and the counter is cleared.
28	Set count value reached	When the count reaches the set value of P8-32, the terminal outputs a valid signal, the output valid signal is cancelled when the count is reset due to the counter is exceeding the maximum value of the counter.
29	AI1 input out of limit	When the value of All is greater than P8-34 or less than P8-35, it output "ON" signal.
30	Model temperature reached	When the radiator temperature of AC drive module reaches the set value P8-36, it output "ON" signal.
31	Fan running	The AC drive outputs "ON" signal when the cooling fan is running.
32	Data output 1 from transfer(DO function)	BIT12 of communication output command 0X2000.
33	Data output 2 from transfer(DO function)	BIT13 of communication output command 0X2000.
34	Data output 1 from transfer(DO function)	BIT14 of communication output command 0X2000.
35	Data output 2 from transfer(DO function)	BIT15 of communication output command 0X2000.

36	Pump 1 start-up	
37		When the multi pump control is effective, it is used as control signal of pump switching. See the multi
38	Pump 3 start-up	pump control function description for details.
39	Pump 4 start-up	

Characteristic selection of terminals S1-S4: Set the characteristics of DI terminals S1, S2, S3 and S4 respectively.

BIT 0: S1 terminal

0: effective closing

1: effective opening

BIT 1: S2 terminal

0: effective closing

1: effective opening

BIT 2: S3 terminal

0: effective closing

1: effective opening

BIT 3: S4 terminal

0: effective closing

1: effective opening

P4-09	S1-S4 terminal	Setting Range: 0.0 ~ 60.0s	Default: 0.10s

This function used to set the filtering time of multiple function input terminal. When the input terminal status change, if still keep the status after changed through the set filtering time then can regard the terminal status change is valid, otherwise, still keep the last time status, thus valid to reduce the error action which caused by the disturb.

P4-10	Characteristic selection of terminals S5-8	Setting Range: 0000 ~ 1111	Default: 0000
-------	--	----------------------------	---------------

Same as P4-08

	CE CO tamesimal		
P4-11	S5-S8 terminal	Setting Range: 0.00 ~ 60.00	Default: 0.1s
	filtering time		Deldalt. 0.13

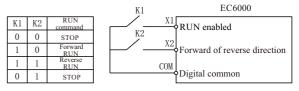
Same as P4-09

P4-12 Terminal command mode Setting Range: 0 ~ 3 Default: 0	0
---	---

This parameter is used to set the mode in which the AC drive is controlled by external terminals.

0: Two-line mode 1

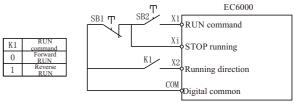
Integration of operation and direction. It is the most commonly used two-line mode, in which the forward/reverse rotation of the motor is decided by S1 and S2. The parameters are set as below:



0: Setting of two-liner mode 1

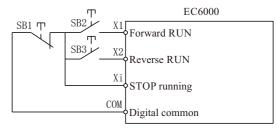
1: Two-line mode 2

EC6000


Separation of operation and direction. In this mode, S1 is RUN valid terminal, and S2 determines the running direction. The parameters are set as below:

1: Setting of two-liner mode 2

2: Three-line mode 1


In this mode, Si is RUN valid terminal. The RUN command is given by S1 and the direction is decided by S2. The (SI) is valid input.

2:Setting of three-liner mode 1

3: Three-line mode 2

In this mode, Si is RUN valid terminal, and the direction is decided by S1 and s2. And both control the running direction at the same time.

3: Setting of three-liner mode 2

Tips: As shown in the preceding figure, if SB1 is ON, the AC drive instructs forward rotation when SB2 is pressed to be ON and instructs reverse rotation when SB3 is pressed to be ON.

P4-13	Terminal action mode selection	Setting Range: 000 ~ 111	Default: 111
	mode selection		

The below status only valid under the situation that terminal control running [P0.02] set at "1" and is the two-wires system control method, means the [P2.12] set at "0" or "1". Must re-input running order again when at three-wires control method.

BIT 0: the terminal recover method of freely stop machine

0: recover the original order after invalid

1: not recover the original order after invalid

This function select is whether execute original running order when freely stop machine terminal at the terminal control running status and freely stop machine terminal change from valid to invalid.

BIT 1: Recover method of emergency stop terminal

0: recover the original order after broken

1: not recover the original order after broken

This function select is whether execute original running order when emergency stop machine terminal at the terminal control running status and emergency stop machine terminal change from valid to invalid.

BIT 2: The terminal running method select after failure reset

0: terminal control can directly start machine

1: terminal control stop machine first then can start machine

BIT 3: Reserved

Note: When AC drive failure alarm, three set passageways which running order all can send valid reset signal to AC drive. If the AC drive currently use terminal control method and the AC drive reset after received the reset signal of terminal or other two passageway reset signal, can select whether execute terminal running orders immediately through this parameter.

P4-16	Terminal running protection select	Setting Range: 00 ~ 11	Default: 00
-------	------------------------------------	------------------------	-------------

The initial wiring status of periphery devices maybe affect the equipment safety when select at terminal running, this parameter provide protection actions for terminal running.

BIT 0: Terminal running order select when power on

Select execute running order method under the situation that terminal running signal valid and when AC drive power.

0: Terminal running order invalid when power on Terminal firstly stop machine then can start machine when power on.

1: Terminal running order valid when power on Terminal control can directly start machine when power on.

BIT 1: The terminal running order select when shift to terminal order through other order passageway

Select execute running order method under the situation that running order passage—way shift to terminal order type when terminal running signal valid.

0: Terminal running order invalid when shifting Terminal control stop machine firstly then can start machine when shifting.

1: Terminal running order valid when shifting Terminal control can start machine directly when shifting.

P4-17	UP/DW frequency value	Setting Range: 0.0 ~ 1.000	Default: 0.01
1 1 1/	o. / D ii ii oquonoj iunuo	Jetung nanger old Elect	DCIault. 0.01

Storage position through UP/DW terminal modify value, the frequency value of this parameter+P0-08=actual output frequency, can select power off storage or not storage.

P4-18	UP/DW frequency adjustment select	Setting Range: 0 ~ 2	Default: 0
-------	-----------------------------------	----------------------	------------

UP/DW terminal frequency adjustment select

0: Retentive at power failure

FC6000

keep frequency record after power off or stop when power off stop machine storage UP/DW terminal adjustment. The AC drive process UP/DW adjustment running from the frequency at last time stop machine when next time power on running.

1: Non-retentive at power failure

Keep frequency record after stop machine when power off storage UP/DW terminal adjustment. The AC drive process UP/DW adjustment running from the frequency at last time stop machine when next time power on running. Not save record after power off, start running from $0.00 \rm{Hz}$.

2: Valid operation, stop and reset

When stop machine and reset UP/DW terminal adjustment, not keep frequency record after power off or stop when stop machine and reset UP/DW terminal adjustment. The AC drive process UP/DW adjustment running from $0.00 \mathrm{Hz}$ frequency when next time running.

P4-19	UP/DW frequency increase/reduce speed	Setting Range: 0.1 ~ 100. 0%/s	Default: 2. 0%/s
-------	---------------------------------------	--------------------------------	------------------

Modify change speed ratio of set frequency when this function define the UP/DW terminal adjustment.

P4-20	Y1 terminal function		Default: 1
P4-21	Y2 terminal function		Default: 2
P4-22	Y3 terminal function		Default: 3
P4-23	Y4 terminal function		Default: 6
P4-24	Y5 terminal function- Extension	Setting Range: 0∼39	Default: 0
P4-25	Y6 terminal function- Extension		Default: 0
P4-26	Y7 terminal function- Extension	-	Default: 0
P4-27	Y8 terminal function- Extension		Default: 0

Value	Function	Description
0	No Output	The output terminal has no function.
1	Forward RUN(FWD)	It indicates that the AC drive is in the state of FWD OR REV, and has output frequency(can be 0), at this
2	Reverse RUN(REV)	time, it output "ON" signal.
3	Fault output 1 (No action during self recovery	When the AC drive fails and stops, it will not action during self recovery, and will output "ON" signal after exceeding the self recovery times.

4	Fault alarm 2 (Action during self recovery	When the AC drive breaks down and stops, it will output terminal "ON" immediately.
5	Ready fo RUN	When the power supply of the main circuit and control circuit of the AC drive has been stable, and the AC drive has not detected any fault information, and the AC drive is in the operational state, it will output "ON" signal.
6	Frequency reached	Refer to P8-19 for instructions.
7	Frequency-level detection FDT1 output	Refer to P8-15, P8-16 for instructions.
8	Frequency-level detection FDT2 output	Refer to P8-17, P8-18 for instructions.
9	Frequency upper limit reached	When the AC drive operates at the upper limit frequency, it will output effective signal.
10	Frequency upper lower reached	When the AC drive operates at the lower limit frequency, it will output effective signal.
11	Current 1 reached	Refer to P8-20, P8-21 for instructions.
12	Current 2 reached	Refer to P8-22, P8-23 for instructions.
13	Zero current output	Refer to P8-24, P8-25 for instructions.
14	Output current out of limit	Refer to P8-26, P8-27 for instructions.
15	Torque limited	In the speed control mode, when the output torque reaches the limit value, the AC drive is in stall protection state and output "ON" signal at the same time.
16	OL1 motor overload pre-warning	Before the motor overload protection acts, it is judged according to the threshold value of overload pre-warning, and outputs "ON" signal after exceeding the pre-warning threshold. Motor overload parameter setting parameter code P9-33.
17	OL2 AC drive overload pre-warning	10s before the overload protection of AC drive, the "ON" signal is output.
18	Zero-speed running (no output at stop)	Output frequency is 0.
19	Acceleration running	Frequency output increasing.
20	Deceleration running	Frequency output decreasing.
21	DC breaking	Output DC breaking
22	PLC step completed	When the end of a stage of program running, 500ms effective signal is output.
23	PLC cycle completed	When the end of a cycle of program running, 500ms effective signal is output.
24	Reserved	
25	Running time reached	When the starting operation time of AC drive exceeds the time set by P8-29, the "ON" signal is output.
26	Set count value reached	When the AC drive reaches the timing time, the port outputs an effective pulse signal with the width of 1 second. Refer to P8-30, P8-31 for instructions.
27	Maximum count value reached	When the count reaches the maximum value of P8-32, the terminal outputs a valid signal whose width is equal to external clock cycle, and the counter is cleared.

28	Set count value reached	When the count reaches the set value of P8-32, the terminal outputs a valid signal, the output valid signal is cancelled when the count is reset due to the counter is exceeding the maximum value of the counter.
29	AI1 input out of limit	When the value of AII is greater than P8-34 or less than P8-35, it output "ON" signal.
30	Model temperature reached	When the radiator temperature of AC drive module reaches the set value P8-36, it output "ON" signal.
31	Fan running	The AC drive outputs "ON" signal when the cooling fan is running.
32	Data output 1 from transfer(DO function)	BIT12 of communication output command 0X2000.
33	Data output 2 from transfer(DO function)	BIT13 of communication output command 0X2000.
34	Data output 1 from transfer(DO function)	BIT14 of communication output command 0X2000.
35	Data output 2 from transfer(DO function)	BIT15 of communication output command 0X2000.
36	Pump 1 start-up	
37	Pump 2 start-up	When the multi pump control is effective, it is used as control signal of pump switching. See the multi
38	Pump 3 start-up	pump control function description for details.
39	Pump 4 start-up	

5.6 P5: AI Terminal Parameters Group

P5-00 Analog input signal select	Setting Range: 0000 ~ 0111	Default: 0010
----------------------------------	----------------------------	---------------

Can shift between the high resistance voltage signal and low resistance input current signal which is the input property at software setting AI joggle through this parameter, and shift of S8 terminal's HDI function.

BIT 0: Al2 signal select

0: $0 \sim 10$ V 1: $0 \sim 20.00$ mA

BIT 1: Al3 signal select

0: 0~10V 1: 0~20.00mA

BIT 2: S8 invalid HDI function

0: Common switch quantity function 1:HDI high speed pulse input function

BIT 3: Reserved

P5-01	AI1 input voltage minimum value	Setting Range: 0 ~ 10.00V	Default: 0.00V
P5-02	AI1 input voltage lower limit corresponding setting	Setting Range: 0.00 ~ 100.00%	Default: 0.00%
P5-03	AI1 input voltage maximum value	Setting Range: 0.00 ~ 10.00V	Default: 10.00V
P5-04	AI1 input voltage upper limit corresponding setting	Setting Range: 0.00 ~ 100.00%	Default: 100.00%
P5-05	AI1 filter time	Setting Range: 0.00 ~ 10.00S	Default: 0.10S

These parameters are used to define the relationship between the analog input voltage and the corresponding setting.

When the analog input voltage exceeds the maximum value (P5-03), the maximum value is used. When the analog input voltage is less than the minimum value (P5-01), the minimum value is used.

When the analog input is current input, 1 mA current corresponds to 0.5 V voltage. P5-05 (All filter time) is used to set the software filter time of All. If the analog input is liable to interference, increase the value of this parameter to stabilize the detected analog input. However, increase of the AI filter time will slow the response of analog detection. Set this parameter properly based on actual conditions.

In different applications, 100% of analog input corresponds to different nominal values. For details, refer to the description of different applications.

P5-06	AI2 input voltage minimum value	Setting Range: 0 ~ 10.00V	Default: 0.00V
P5-07	AI2 input voltage lower limit corresponding setting	Setting Range: 0.00 ~ 100.00%	Default: 0.00%
P5-08	AI2 input voltage maximum value	Setting Range: 0.00 ~ 10.00V	Default: 10.00V
P5-09	AI2 input voltage upper limit corresponding setting	Setting Range: 0.00 ~ 100.00%	Default: 100.00%
P5-10	AI2 filter time	Setting Range: 0.00 ~ 10.00S	Default: 0.10S

Please refer to the instructions of AI1 for the function and usage of AI2.

P5-11	AI3 input voltage minimum value	Setting Range: 0 ~ 10.00V	Default: 0.00V
P5-12	AI3 input voltage lower limit corresponding setting	Setting Range: 0.00 ~ 100.00%	Default: 0.00%
P5-13	AI3 input voltage maximum value	Setting Range: 0.00 ~ 10.00V	Default: 10.00V
P5-14	AI3 input voltage upper limit corresponding setting	Setting Range: 0.00 ~ 100.00%	Default: 100.00%
P5-15	AI3 filter time	Setting Range: 0.00 ~ 10.00S	Default: 0.10S

Please refer to the instructions of AI1 for the function and usage of AI3.

P5-16	HDI minimum input frequency	Setting Range: 0.00 ~ 50.00kHz	Default: 0.00kHz
P5-17	Corresponding setting of HDI minimum input frequency	Setting Range: 0.00 ~ 10.00%	Default: 0.00%
P5-18	HDI maximum input frequency	Setting Range: 0.00 ~ 50.00KHz	Default: 50.00kHz
P5-19	Corresponding setting of HDI maximum input frequency	Setting Range: 0.00 ~ 100.00%	Default: 100.00%
P5-20	HDI filter time	Setting Range: 0.00 ~ 10.00S	Default: 0.10S

These parameters are used to set the relationship between S8 pulse input and corresponding settings.

The pulses can only be input by S8.

EC6000

The method of setting this function is similar to that of setting AII function.

P5-29	A01 output selection	-	Default: 0
P5-30	A02 output selection		Default: 1
P5-31	HDO output selection		Default: 2

The output range of AO1 and AO2 is OV $\!\sim\!10$ V or O mA $\!\sim\!20$ mA.

The output pulse frequency of the HDO terminal ranges from 0.01 kHz to 50.00 kHz.

The relationship between pulse and analog output ranges and corresponding functions is listed in the following table.

Value	Function	Description	
0	Set frequency	0 to maximum output frequency	
1	Output frequency	0 to maximum output frequency	
2	Output current	0 to 2 times of rated motor current	
3	Output voltage	0 to 1.2 times of rated AC drive voltage	
4	Mechanical speed	O to rotational speed corresponding to maximum output frequency	

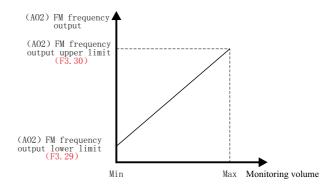
5	Set torque	0 to 2 times of rated motor torque	
6	Output torque	0 to 2 times of rated motor torque	
7	PID setting	The maximum output corresponds to 100% PID setting	
8	PID feedback	The maximum output corresponds to 100% PID feedback	
9	Output power	0 to 2 times of rated power	
10	Bus voltage	Maximum output corresponds to 2 times of rated DC voltage of AC drive.	
11	Input voltage	0 to 1.2 times of rated AC drive voltage	
12	AI1 input value	Maximum output corresponding to AI1 upper limit value	
13	AI2 input value	Maximum output corresponding to AI2 upper limit value	
14	AI3 input value	Maximum output corresponding to AI3 upper limit value	
15	PUL input value	Maximum output corresponding to PUL upper limit value	
16	Module temperature	0-100°C	
17	Motor temperature	Motor temperature The maximum output corresponds to a temperature of 100°C	
18	Excitation quantity	Excitation quantity Maximum output corresponds to 100% motor rated current	
19	RS485 Communication setting	0. 0% - 100. 0%	

P5-32	Analog quantity output signal select	Setting Range: 000 ~ 122	Default: 000

Can shift between the voltage signal and current signal output which is the input property at software setting analog quantity output joggle through this parameter, and HDO function shift of Y4 terminal.

P5-33	A01 output gain	Setting Range: 25.0% ~ 200.0%	Default: 100.0%
P5-34	A01 offset coefficient	Setting Range: -10.0% ~ 10.0%	Default: 0.0%
P5-35	A02 output gain	Setting Range: 25.0% ~ 200.0%	Default: 100.0%
P5-36	A02 offset coefficient	Setting Range: -10.0% ~ 10.0%	Default: 0.0%

These parameters are used to correct the zero drift of analog output and the output amplitude deviation. They can also be used to define the desired AO curve.


If "b" represents zero offset, "k" represents gain, "Y" represents actual output, and "X" represents standard output, the actual output is: Y = kX + b.

The zero offset coefficient 100% of A01 and A02 corresponds to 10~V (or 20~mA). The standard output refers to the value corresponding to the analog output of 0~to~10~V (or 0~to~20~mA) with no zero offset or gain adjustment.

For example, if the analog output is used as the running frequency, and it is expected that the output is 8 V when the frequency is 0 and 3 V at the maximum frequency, the gain shall be set to -0.50, and the zero offset shall be set to 80%.

P5-37	HDO pulse output down limit	Setting Range: 0.00 ~ 50.00kHz	Default: 0.20kHz
P5-38	HDO pulse output up limit	Setting Range: 0.00 ~ 50.00kHz	Default: 50.00kHz

Set the down limit and up limit frequency value of output signal when ${\tt S8}$ at ${\tt HD0}$ frequency pulse output.

Setting of FM pulse frequency output

5.7 P6: Start/Stop Control Parameters Group

P6-00	Start Mode	Setting Range: 0 ~ 2	Default: 0
-------	------------	----------------------	------------

0: Start from start frequency

EC6000

The AC drive control the AC drive start at P6-02 set start frequency and P6-02 set start frequency duration; suitable to the situation that bigger static rub torque and smaller loading inertia, or suitable when user matched outer mechanical brake equipment. Means the situation that motor shaft able to keep static after motor stopped and before start again.

1: Firstly DC retaining then start from start frequency

Firstly add a certain DC retaining energy (means electromagnetic brake gate) from the retaining current P6-05 before start and retaining time P6-06 before start, then start from the start frequency; suitable to the small inertia loading which stop machine status had corotation and reversal appearance.

2: Start again after speed tracing and direction judgement

The AC drive firstly check the speed and direction of motor, then running to set frequency start from the checked speed according to accelerate/decelerate time. It's speed trace method divided into interior speed trace and outer exterior speed trace, select through the shift terminal.

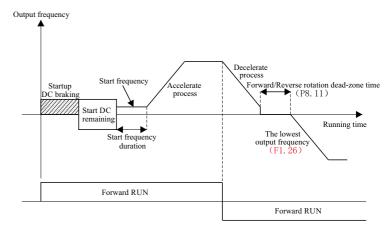
P6-01	Maximum output frequency	Setting range: 0.00 ~ P6-04	Default: 0.50Hz
P6-02	Startup pre-excited current	Setting range: 0 ~ 100%	Default: 30%
P6-03	Startup pre-excited time	Setting range: 0.00 ~ 60.00s	Default: Model dependent
P6-04	Startup frequency	Setting range: 0.00 ~ 60.00Hz	Default: 0.50Hz
P6-05	Startup frequency holding time	Setting range: 0.0 ~ 50.0s	Default: 0.0S
P6-06	Startup DC braking time	Setting range: 0 ~ 150%	Default: 0%
P6-07	Startup DC braking time	Setting range: 0.0 ~ 300.0s	Default: 0.0S

The lowest output frequency: This function defined as the min output frequency of AC drive, the AC drive output 0.00Hz when lower than this frequency.

Startup DC braking time: This parameter used to set the time of asynchronous motor preexcitation when starting. This parameter can build magnetic field before motor start, able to effectively improve the start performance of motor, reduce the start current and start time.

Startup frequency: Means the initial output frequency when AC drive starting. Set the suitable start frequency can has higher start torque, can obtain some rush force for some loading with bigger static rub force under static status. But if too big set value, sometime will occur the failure appearance like output over current.

Startup frequency duration: Means the time that AC drive keep running under the start frequency.


Startup pre-excited current: Means the size of retaining current which transferred into motor by AC drive when DC retaining. This value based on the output rated current of AC drive. Only has DC retaining function at starting when P6-00 select "1".

Startup pre-excited time: Retaining time before start: means the duration of DC retain ing current when starting; only has DC retaining function when P6-00 select "1"; no DC retaining process when retaining time is 0.0s.

Note: The start frequency not limited by the down limit frequency P0-13, but limited by the min output frequency P6-01, if the set value lower than value of P6-01 then output frequency will be 0.00Hz.

Reminding: When the AC drive in the corotation and reversal under the normal running, and modify the frequency set value to process add or reduce speed running, all start at the min output frequency P6-01 or output 0.00Hz after reduced speed to the min output frequency P6-01.

Reminding: During the AC drive start to rises speed process, the AC drive output is 0 when set frequency less than start frequency.

Startup diagram

P6-08	Initial frequency of stop DC braking	Setting range: 0.00 ~ 50.00Hz	Default: 0.00Hz
P6-09	Stop DC braking current	Setting range: 0 ~ 150%	Default: 0%
P6-10	Waiting time of stop DC braking	Setting range: 0.00 ~ 60.00s	Default: 0.0s
P6-11	Stop DC braking holding time	Setting range: 0.00 ~ 600.00s	Default: 0.0s

Initial frequency of stop DC braking: means the AC drive will stop output when moderate to this frequency, start DC remaining function; when stop machine, start DC retaining function when output frequency less than the stop machine DC retaining start frequency. During the moderate stop machine process, start DC retaining when set frequency less than the stop machine DC retaining start frequency, the output frequency of AC drive jump change to be 0. If the running working situation no strict requirements of stop machine retaining, DC retaining start frequency when stop machine should set at smaller as possible.

Stop DC braking current: means the size of retaining current which transferred into motor by AC drive when DC retaining. This value based on the output rated current of AC drive. DC retaining function can provide zero torque moment. Generally, it used to improve the stop machine precision and realize quickly stop machine, but can't be used at moderate retaining when normally running; once start DC retaining, the AC drive will stop output. If too big DC retaining current set, the AC drive easy to generate over current failure when stop machine.

Waiting time of stop DC braking: the waiting time that after AC drive moderate to stop machine DC retaining start frequency stop output, and start DC retaining.

Stop DC braking holding time: Stop machine DC retaining duration: means the time of DC retaining current when stop, no DC retaining process when the duration is 0.0s, means the DC retaining function invalid.

P6-12	Zero speed holding time	Setting Range: 0 ~ 150%	Default: 0%
P6-13	Acceleration mode selection	Setting range: 0 ~ 1	Default: 00
P6-14	S-curve acceleration star time	Setting range: 0.01 ~ 20.00s	Default: 0.50
P6-15	S-curve acceleration end time		Default: 0.50
P6-16	S-curve deceleration start time		Default: 0.50
P6-17	S-curve deceleration end time		Default: 0.50

Function parameters description

Accelerate/decelerate select

BIT 0: accelerate/decelerate time base

This parameter used as the accordance of select accelerate/decelerate time.

- 0: The max frequency The base of accelerate/decelerate time is the max frequency P0-09.
- 1: Fix frequency $\,$ The base of accelerate/decelerate time is the 50.00Hz fix frequency.

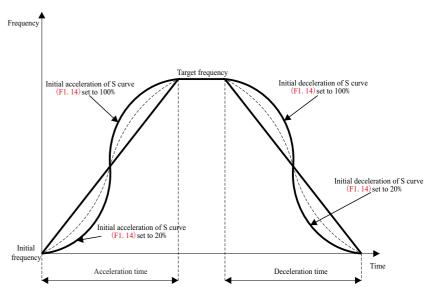
BIT 1:accelerate/decelerate method

EC6000 provides two types accelerate/decelerate method; the two accelerate/decelerate method all are valid during normally start, stop machine, corotation and reversal, accelerate and decelerate process.

- 0: Linear Generally, it's suitable to commonly used loading.
- 1: S curve S type accelerate and decelerate curve mainly provide for the loading like that need retard noise and vibration when at accelerate and decelerate, reduce the start-stop impact or low frequency need gradually reduce torque, high frequency need short time accelerate. If happen over current or overload failure when starting then please reduce the set value of P6-12.

BIT 2:Reserved

BIT 3:Reserved


Accelerate start S word time: the frequency gradually rise speed ratio when accelerate process start.

Accelerate finish S word time: the frequency gradually rise speed ratio when accelerate process finish.

Decelerate start S word time: the frequency gradually reduce speed ratio when decelerate process start.

Decelerate finish S word time: the frequency gradually reduce speed ratio when decelerate process finish.

More bigger S word time set then more bending of S curve during the accelerate process, oppositely, S curve more close to the straight line. Can increase the S word time to make accelerate and decelerate curve more soft.

S-curve acceleration/deceleration

P6-18	Rotational speed tracking mode	Setting Range: 0 ~ 2	Default: 0
-------	-----------------------------------	----------------------	------------

To complete the rotational speed tracking process within the shortest time, select the proper mode in which the AC drive tracks the motor rotational speed.

0: From frequency at stop

It is the commonly selected mode.

1: From zero frequency

It is applicable to restart after a long time of power failure.

2: From the maximum frequency

It is applicable to the power-generating load.

P6-19 Rotational speed trackii waiting time	Setting Range: 0.0 ~ 600. 0s	Default: 1. 0s
---	------------------------------	----------------

The interval between receiving start command and executing speed tracking.

In the rotational speed tracking restart mode, select the rotational speed tracking speed. The larger the value is, the faster the tracking is. However, too large value may cause unreliable tracking.

P6-21	Torque tracking closed loop current KP	Setting range: 0 ~ 1000	Default: 50
P6-22	Torque tracking closed loop current KI	Setting range: 0 ~ 1000	Default: 50
P6-23	Torque tracking current	Setting range: 30% ~ 200%	Default: 100%
P6-24	Torque tracking current lower limit	Setting range: 10 ~ 100%	Default: 30%
P6-25	Torque tracking rise time	Setting range: 0.5 ~ 30s	Default: 1.1
P6-26	Torque tracking demagnetization time	Setting range: 0.5 ~ 30s	Default: 1.1

5.8 P7: System Configuration Parameter Group

P7-00	Parameter and key lock selection	Setting Range: 0 ~ 3	Default:0
	IOCK SCICCUOII		

0: Unlock

Parameter and key lock function invalid

1: Function parameter lock

Lock all set value of function parameter, forbid to modify the parameters. Need input password when unlock, the password set by P7-01.

2: Function parameter and key lock(except FWD/STOP/JOG/PRG)

Lock all set value of all function parameter, forbid to modify the parameters; at the same time, lock all keys on the keyboard except FWD/STOP/JOG/PRG. Means only can process start/stop operation on AC drive through keyboard. Need input password when unlock, the password set by P7-01.

3: Function parameter and key all locked

Lock all set value of function parameters, at the same time, lock all keys on the keyboard except PRG. Can't process any operation on AC drive through keyboard. Need input password when unlock, the password set by P7-01.

Note: when P7-01 set as "2" or "3" function, press down "PRG" key on keyboard then automatically enter into password input interface, input the correct password then can enter into function parameter interface.

P7-01	User Password	Setting Range: 0 ~ 65535	Default: 0
-------	---------------	--------------------------	------------

Used to set user password

When the parameter and key lock select [F4.00] at lock status (not at "0"), must input this password then can unlock. The default password of leave factory is 0, please safe keep the set well password.

P7-02	Function range of keyboard " STOP " key	Setting Range: 000 ~ 111	Default: 0
-------	---	--------------------------	------------

BIT0: terminal control select

0: invalid to terminal order

Keyboard stop key "STOP" can't be as stop machine key to stop machine when give running signal at terminal.

1: valid to terminal order

Keyboard stop key "STOP" can be as stop machine key to stop machine when give running signal at terminal.

BIT1: communication control select

0: invalid to communication order

Keyboard stop key "STOP" can't be as stop machine key to stop machine when give running signal at communication.

1: valid to communication order

Keyboard stop key "STOP" can be as stop machine key to stop machine when give running signal at communication.

BIT0: expanding card control select

0: invalid to expanding card order

Keyboard stop key "STOP" can't be as stop machine key to stop machine when give running signal at expanding card.

1: valid to expanding card order

Keyboard stop key "STOP" can be as stop machine key to stop machine when give running signal at expanding card.

BIT 3:Reserved

Note: if select valid to terminal control or communication control method then AC drive be at stop machine lock status when at terminal control or communication control and after press down the keyboard stop key stop machine. Now, if want to make AC drive run again, must use the selected running order passageway issue stop machine order, then can make AC drive run again after release the lock status.

P7-03	keyboard fly shuttle key modify the selection	Setting Range: 00 ~ 17	Default: 01

BIT0: panel number potential device setting select

- 0: Invalid
- 1: Main frequency
- 2: Auxiliary frequency Source Y
- 3: Up limit frequency
- 4: V/F separated voltage
- 5: PID Setting
- 6: PID Feedback
- 7: Torque setting

BIT1:

- 0: directly valid after knob modified
- 1: press "Enter" key valid after knob modified

P7-04 Function parameter copy	Setting Range: 0 ~ 2	Default: 0
-------------------------------	----------------------	------------

Set function parameter copy, the parameter automatically change to be "0" after finish copy.

0: No operation

1: AC drive parameter value transmit to keyboard and save

Cop the FO to Fd parameters group in the AC drive to the keyboard and storage.

2: Transmit the keyboard saved parameter value to AC drive

Download the copied data which in the keyboard to AC drive.

Note: will remind error when software version not compatible, unable to transmit the saved parameter value in the keyboard to AC drive.

P7-05	Display speed factor	Setting Range: 0.001 ~ 50.000	Default: 1.000
-------	----------------------	-------------------------------	----------------

If the load speed indicate coefficient P7-05 as 2.000, the load speed is: 40.00*2.000=80.00 when the running frequency of AC drive is 40.00Hz.

P7-06	First line run display	Setting range: 0000 ~ BBBB	出厂值:6321
P7-07	First line stop display		出厂值:CA40

The indicate content under the first row running status of keyboard: the circling monitor content of first row when set the running status of keyboard, can modify the monitor content through keyboard "<" key when at running status, circulating between the unit of LED and LED thousand digit, jump one item each one time press the key. No power off memory function after circulating monitor parameter modified, default indicate the unit of LED setting value after power on.

The indicate content under the first row stop status of keyboard: the circling monitor content of first row when set the stop status of keyboard, can modify the monitor content through keyboard "<>" key when at stop status, circulating between the unit of LED and LED thousand digit, jump one item each one time press the key. No power off memory function after circulating monitor parameter modified, default indicate the unit of LED setting value after power on.

The set content from the BIT 0 of LED to BIT 3 of LED as below:

BIT0: The first group displays

BIT1: The second group displays

BIT2: The third group displays

BIT3: The fourth group displays

0: Given frequency 1: Output frequency 2: Output current 3: Output voltage 4: Input voltage 5: Machanical speed 6: Bus voltage 7: Output power 8: Given torque

9: Output torque A: PID setting B: PID feedback C: AII input value D: AI2 input value E: HDI input value

F: Counter value

P7-08	Second line run display	Setting range: 0000 ~ BBBB	Default: 0792
P7-09	Second line stop display		Default: 0CA4

Only valid at double rows keyboard, the detail instruction refer to the parameter $P4-06 \sim P4-07$.

P7-10	Multiple function expanding card selection	Setting Range: 0 ~ 8	Default: 0

 ${\sf EC6000}$ can support multiple expanding card application to meet the application of field special requirements.

P7-11	Operation panel display item selection	Setting Range: 0000 ~ 1111	Default: 8001

BIT0:LCD keyboard indicate language

Set liquid crystal keyboard language, only valid when use the liquid crystal keyboard.

0:Chinese

FC6000

1:English

BIT1:output frequency indicate select

0: Target frequency

Indicate the target frequency of currently controlled motor.

1: Syn frequency

Indicate the output frequency after AC drive calculated.

BIT2:machinery speed indicate select

0: Target speed

Indicate the target speed of currently controlled motor.

1:Actual speed

Indicate the AC drive actually measured motor speed.

BIT3:Reserved

P7-12	Accumulative power-on days	Setting range: 0 ~ 65535	Default: Ready-only
P7-13	Accumulative power-on hours	Setting range: 0.0 ~ 6553.5	Default: Ready-only

It is used to display the accumulative power-on time of the AC drive since the delivery.

P7-14	Accumulative running days	Setting range: 0 ~ 65535	Default: Ready-only
P7-15	Accumulative running hours	Setting range: 0.0 ~ 6553.5	Default: Ready-only

It is used to display the accumulative running time of the AC drive since the delivery.

P7-16	Accumulative power consumption(10000 kWh)	Setting range: 0 ~ 65535	Default: Ready-only
P7-17	Accumulative power consumption(kWh)	Setting range: 0.0 ~ 65535	Default: Ready-only

It is used to display the accumulative power consumption of the AC drive until now.

P7-18	AC drive status before power off	Setting range: 0000 ~ 0011	Default: Ready-only
-------	-------------------------------------	----------------------------	---------------------

BIT0: 0:STOP 1:RUN

BIT1: 0:FOWARD RUN 1:REVERSE RUN

BIT2: Reserved BIT3: Reserved

5.9 P8: Auxiliary Functions

P8-00	Forward JOG running frequency(FJOG)	Setting range: 0 ~ Maximum frequency	Default: 5.00Hz
P8-01	Reverse JOG running frequency(RJOG)	Setting range: 0 ~ Maximum frequency	Default: 5.00Hz
P8-02	JOG acceleration time	Setting range: 0.1 ~ 6500.0s	Default: 10.0s
P8-03	JOG deceleration time	Setting range: 0.1 ~ 6500.0s	Default: 10.0s

These parameters are used to define the set frequency and acceleration/deceleration time of the AC drive when jogging. The start-up mode is "Direct start" and the stop mode is "Decelerate to stop" (PO-18) during jogging.

P8-04	Acceleration time 2		Default: 10.0s
P8-05	Deceleration time 2	Setting range: 0.1 ~ 6500.0s	Default: 10.0s
P8-06	Acceleration time 3		Default: 10.0s
P8-07	Deceleration time 3		Default: 10.0s
P8-08	Acceleration time 4		Default: 10.0s
P8-09	Deceleration time 4		Default: 10.0s

The EC6000 provides a total of four groups of acceleration/deceleration time, that is, the preceding three groups and the group defined by PO-15 and PO-16. Definitions of four groups are completely the same, You can switch over between the four groups of acceleration/deceleration time through different state combinations of DI terminals. For more details, see the descriptions of P4-00 to P4-07.

P8-10	Emergency stop deceleration time	Setting Range: 0.1 ~ 6500.0s	Default: 10.0s

Used to set the moderate time when emergency stop. The definition of emergency stop time same to the accelerate and decelerate time.

Emergency stop can trigger valid by "Emergency stop terminal", the details check parameter $P4-00 \sim P4-07$. After release emergency stop order and terminal control two wire system running, whether execute original running order decided b the LED decade set value of parameter P4-13, the details check parameter P4-13.

P8-11	Forward/Reverse rotation dead-zone time	Setting Range: 0.0 ~ 150.0s	Default: 0.0s
-------	---	-----------------------------	---------------

It is used to set the time when the output is 0 Hz at transition of the AC drive forward rotation and reverse rotation, as shown in the following figure. Figure 6-15 Forward/Reverse rotation dead-zone time

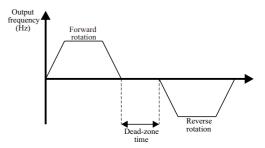


Figure 6-15 Forward/Reverse rotation Dead-zone time

P8-12	Jump frequency 1	Setting range: 0.0Hz ~ Maximum frequency	Default: 0.00Hz
P8-13	Jump frequency 2	Setting range: 0.0Hz ~ Maximum frequency	Default: 0.00Hz
P8-14	Frequency jump amplitude	Setting range: 0.0Hz ~ Maximum frequency	Default: 0.00Hz

When set frequency in the jump frequency range, the actual running frequency will running at the jump frequency which more clear to the set frequency. Through set jump frequency can make the AC drive avoid the mechanical resonate points of load. Can set two jump frequency points, if make the two jump frequency set as 0 then jump frequency function canceled. The principle diagram of jump frequency and jump frequency range please refer to the picture 6-14.

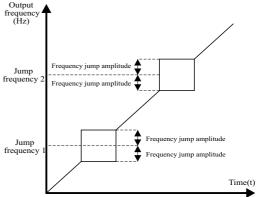
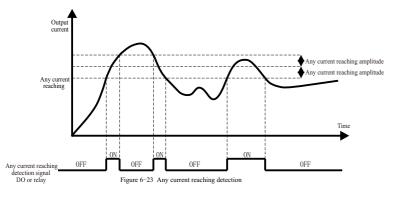


Figure 6-14 Principle of the jump frequencies and jump amplitude

P8-15	Frequency detection value (FDT1)	Setting range: 0.0Hz ~ Maximum frequency	Default: 30.0Hz
P8-16	Detection range of FDT1		Default: 0.00Hz
P8-17	Frequency detection value (FDT2)		Default: 50.00Hz
P8-18	Detection range of FDT2		Default: 0.00Hz

Parameters used in set frequency test level, the output frequency level test 1/2 (FDT1/2) terminal's output signal when output frequency arrive or higher than the P8-15/ P8-17 setting value and after pass through parameter P8-16/ P8-18 setting delay frequency. Stop output signal when output frequency arrive or higher than the P8-15/ P8-17 setting value and after pass through parameter P8-16/ P8-18 setting delay frequency.


P8-19		Setting Range: 0.0Hz ~ Maximum frequency	Default: 3.00Hz
-------	--	---	-----------------

It is used to set the time when the output is 0 Hz at transition of the AC drive forward rotation and reverse rotation, as shown in the following figure. Figure 6-15 Forward/Reverse rotation dead-zone time

P8-20	Current reaching 1 detection value	Setting Range: 0 ~ 200.0%	Default: 100.0%
P8-21	Current reaching 1 detection range	Setting Range: 0 ~ 100.0%	Default: 5.0%

P8-22	Current reaching 2 detection value	Setting Range: 0 ~ 200.0%	Default: 150.0%
P8-23	Current reaching 2 detection range	Setting Range: 0 ~ 100.0%	Default: 5.0%

If the output current of the AC drive is within the positive and negative amplitudes of any current reaching detection value, the corresponding DO becomes ON. The EC6000 provides two groups of any current reaching detection parameters, including current detection value and detection amplitudes, as shown in the following figure.

P8-24	Zero current detection level	Setting Range: 0 ~ 200.0%	Default: 5.0%
P8-25	Zero current detection delay time	Setting Range: 0.0 ~ 650.0s	Default: 0.20s

If the output current of the AC drive is equal to or less than the zero current detection level and the duration exceeds the zero current detection delay time, the corresponding DO becomes ON. The zero current detection is shown in the following figure. Figure 6-21 Zero current detection

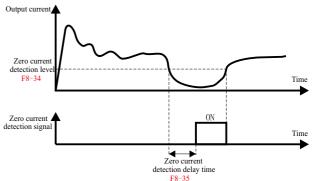


Figure 6-21 Zero current detection

P8-26	Output over-current threshold	Setting Range: 0.0% ~ 200.0%	Default: 100%
P8-27	Output over-current detection delay time	Setting Range: 0.0s ~ 650.0s	Default: 0.20s

If the output current of the AC drive is equal to or higher than the over-current threshold and the duration exceeds the detection delay time, the corresponding DO becomes ON. The output over-current detection function is shown in the following figure. Figure 6-22 Output over-current detection

FC6000

P8-32	Counter Max	Setting Range: 0 ~ 65000	Default: 1000
P8-33	Counter set value	Setting Range: 0 ~ 65000	Default: 500

This parameter stipulate the counting action in the interior timer, the timing o' clock input terminal of timer selected by parameter $P4-00 \sim P4.07$.

The max value of timer: when the counting vale of outer 0' clock of timer reach up to the value which stipulated by parameter P8-32, output a section width equal to outer 0' clock period valid signal by the corresponding output terminal (output terminal selected by $P4-21 \sim P4-28$). Means when the next one counting signal input then the output terminal stop output valid signal.

The set value of timer: when the counting vale of outer 0' clock of timer reach up to the value which stipulated by parameter P8-33. When the corresponding output terminal (output terminal selected by P4-21 \sim P4-28) output valid signal, continue counting till exceed the the value which stipulated by parameter P8-32, this output valid signal cancel when caused timer reset.

The timer's counting value all can reset it's counting value through multiple function input terminal $P4-00 \sim P4.07$ set timer reset terminal at anytime.

Required the O' clock period of timer bigger than 10ms, the min pulse width 5ms.

P8-34	AI1 voltage protection value lower limit	Setting Range: 0.0V ~ P8-35	Default: 3.10V
P8-3	AI1 voltage protection value upper limit	Setting Range: P8-34 ~ 10.00V	Default: 6.80V

These two parameters are used to set the limits of the input voltage to provide protection on the AC drive. When the AI1 input is larger than the value of P8-35 or smaller than the value of P8-34, the corresponding DO becomes ON, indicating that AI1 input exceeds the limit.

P8-36	Module temperature threshold	Setting Range: 0.1 ~ 100°C	Default: 75.0°C
-------	---------------------------------	----------------------------	-----------------

When the radiator temperature of the AC drive reaches the value of this parameter, the corresponding DO becomes ON, indicating that the module temperature reaches the threshold.

5.10 P9: Fault and Protection Parameters Group

	Fault protection		
P9-00	Fault protection action selection 1	Setting range: 0000 ~ 1111	Default: 1111
	action selection 1		

BIT 0: Motor overload protection selection

0:The motor overload protective function is valid. The motor is exposed to potential damage due to overheating. A thermal relay is suggested to be installed between the AC drive and the motor.

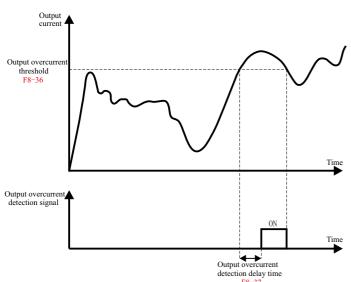


Figure 6-22 Output overcurrent detection F8-37

P8-28	Timing operation function	Setting Range: 00 ~ 31	Default: 00
P8-29	Timing duration setting	Setting Range: 0.0 ~ 6500.0Min	Default: 0.0Min

These parameters are used to implement the AC drive timing function.

If P8-28 is set to 1, the AC drive starts to time at startup. When the set timing duration is reached, the AC drive stops automatically and meanwhile the corresponding DO becomes ON.

The AC drive starts timing from 0 each time it starts up and the remaining timing duration can be queried by U0-20. The timing duration is set in unit of minute.

P8-30	Timer time unit	Setting Range: 0 ~ 2	Default: 0
P8-31	Timer set value	Setting Range: 0 ~ 65000	Default: 0

Timer's time unit: this function used to set the timing time unit of AC drive timer.

0: Second

The time unit of timer timing is second

1: Minute

The time unit of timer timing is minute

2: Hour

The time unit of timer timing is hour

Timer setting value:

This parameter used in set the timing time of AC drive. The start of timer finished by the outer timer trigger terminal of timer (trigger terminal selected by $P4-00 \sim P4.07$), start timing from that received the outer trigger signal, after the timing time

P9-07 Failure operation frequency Setting Range: 0.0 ~ 655.35Hz Default: ready-only

It displays the frequency when the latest fault occurs.

P9-08 Failure output current Setting Range: 0.1 ~ 2000.0A Default: ready-only

It displays the current when the latest fault occurs.

P9-09 Failure DC-bus voltage Setting Range: 0 ~ 3000V Default: ready-only

It displays the bus voltage when the latest fault occurs.

P9-10 Failure AC drive status Setting Range: 0000 ~ 0031 Default: ready-only

BIT0: Direction of operation

0: FWD 1: REV BIT1: Running state

FC6000

0: STOP 1: CONST 2: ACC 3: DEC

BIT2 : RESERVED BIT3 : RESERVED

P9-11 Failure S terminal status | See input terminal status diagram | Default: ready-only

It displays the status of all S terminals when the latest fault occurs. The sequence is as follows:

 BIT9
 BIT8
 BIT7
 BIT6
 BIT5
 BIT4
 BIT3
 BIT2
 BIT1
 BIT0

 S10
 S9
 S8
 S7
 S6
 S5
 S4
 S3
 S2
 S1

If a DI is ON, the setting is 1. If the DI is OFF, the setting is 0. The value is the equivalent decimal number converted from the DI status.

P9-12 Failure Y terminal status | See input terminal status diagram | Default: ready-only

It displays the status of all output terminals when the latest fault occurs. The sequence is as follows:

BIT4	BIT3	BIT2	BIT1	BIT0
Y2	Y1	REL2	REL1	FMP

If an output terminal is ON, the setting is 1. If the output terminal is OFF, the setting is 0. The value is the equivalent decimal number converted from the DI statuses.

P9-13	Failure power on time	Setting Range: 0~65535	Default: ready-only
-------	-----------------------	------------------------	---------------------

Power-on time upon 3rd fault

P9-14 Failure running time Setting Range: 0~65535 Default: ready-only

It displays the present running time when the latest fault occurs.

P9-15	Frequency upon 2nd fault	Same as P9-7	Default: Ready-only
P9-16	Current upon 2nd fault	Same as P9-8	Default: Ready-only
P9-17	Output voltage upon 2nd fault	Same as P9-9	Default: Ready-only

1:The AC drive judges whether the motor is overloaded according to the inverse time lag curve of the motor overload protection. Set P9-32 properly based on the actual overload capacity. If the value of F9-01 is set too large, damage to the motor may result because the motor overheats but the AC drive does not report the alarm.

BIT 1: Short-circuit to ground upon power-on

It is used to determine whether to check the motor is short-circuited to ground at power-on of the AC drive. If this function is valid, the AC drive's UVW will have voltage output a while after power-on.

BIT 2: Input phase loss protection/contactor energizing protection selection

0: invalid 1: valid

It is used to determine whether to perform input phase loss or contactor energizing protection.

BIT 3: Output phase loss protection selection

0: invalid 1: valid

It is used to determine whether to perform output phase loss protection.

P9-01 Protection function selection 2 Setting range: 000 ~ 411 Default: 000

BIT 0: Output load loss protection selection

0: Invalid 1:Ramp to stop

BIT 1: Instantaneous power failure action selection

0: Invalid 1: Valid

Upon instantaneous power failure or sudden voltage dip, the DC bus voltage of the AC drive reduces. This function invalids the AC drive to compensate the DC bus voltage reduction with the load feedback energy by reducing the output frequency so as to keep the AC drive running continuously.

BIT 2: Continue operation frequency selection in case of failure.

0: Current running frequency

1: Set frequency

2: Frequency upper limit

3: Frequency lower limit

4: Backup frequency upon abnormality

P9-02	Fault auto reset times	Setting range: 0 ~ 20	Default: 0

It is used to set the times of fault auto resets if this function is used. After the value is exceeded, the AC drive will remain in the fault state.

P9-03	Time interval of fault auto reset	Setting range: 0.0 ~ 100.0s	Default: 1.0s

It is used to set the waiting time from the alarm of the AC drive to fault auto reset.

P9-04	1st fault type	Setting Range: 1 ~ 53	Default: ready-only
P9-05	2nd fault type		Default: ready-only
P9-06	3rd fault type		Default: ready-only

It is used to record the types of the most recent three faults of the AC drive. 0 indicates no fault. For possible causes and solution of each fault, refer to the troubleshooting section for instructions.

P9-36	Recognize time at instantaneous rise action	Setting Range: 0.00 ~ 100.00s	Default: 0.50s
P9-37	Instantaneous ston		Default: 100%

Upon instantaneous power failure or sudden voltage dip, the DC bus voltage of the AC drive reduces. This function invalids the AC drive to compensate the DC bus voltage reduction with the load feedback energy by reducing the output frequency so as to keep the AC drive running continuously.

If P9-01=1, upon instantaneous power failure or sudden voltage dip, the AC drive decelerates. Once the bus voltage resumes to normal, the AC drive accelerates to the set frequency. If the bus voltage remains normal for the time exceeding the value set in P9-36, it is considered that the bus voltage resumes to normal.

If P9-01=2, upon instantaneous power failure or sudden voltage dip, the AC drive decelerates to stop.

Action judging voltage at instantaneous power failure: The larger the setting is, the faster the deceleration time is, and the more energy the load feeds back in unit time.

If F9-59=2, upon instantaneous power failure or sudden voltage dip, the AC drive decelerates to stop.

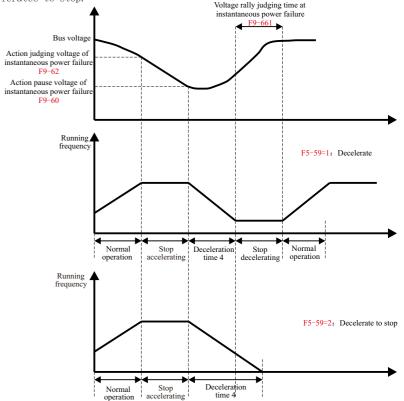


Figure 6-25 Instantaneous power failure

P9-18	AC drive status upon 2nd fault	Same as P9-10	Default: Ready-only
P9-19	S terminal status upon 2nd fault	Same as P9-11	Default: Ready-only
P9-20	Y terminal status upon 2nd fault	Same as P9-12	Default: Ready-only
P9-21	Power-on time upon 2nd fault	Same as P9-13	Default: Ready-only
P9-22	Running time upon 2nd fault	Same as P9-14	Default: Ready-only
P9-23	Frequency upon 3rd fault	Same as P9-15	Default: Ready-only
P9-24	Current upon 3rd fault	Same as P9-16	Default: Ready-only
P9-25	Output voltage upon 3rd fault	Same as P9-17	Default: Ready-only
P9-26	AC drive status upon 3rd fault	Same as P9-10	Default: Ready-only
P9-27	S terminal status upon 3rd fault	Same as P9-11	Default: Ready-only
P9-28	Y terminal status upon 3rd fault	Same as P9-12	Default: Ready-only
P9-29	Power-on time upon 3rd fault	Same as P9-13	Default: Ready-only
P9-30	Running time upon 3rd fault	Same as P9-14	Default: Ready-only

P9-31	Backup frequency upon abnormality	Setting Range: 0.0 ~ 100.0%	Default: 100.0%

If a fault occurs during the running of the AC drive and the handling of fault is set to "Continue to run", the AC drive displays A** and continues to run at the frequency set in P9-31. The setting of F9-55 is a percentage relative to the maximum frequency.

P9-32	Motor overload protection gain	Setting Range: 0.20 ~ 10.00	Default: 1.00
-------	--------------------------------	-----------------------------	---------------

P9-32=Overload ratio*Overload time/2.2 (Overload time: Minute)

For example, when the motor operates at 1.5 times of rated current, the AC drive is required to report the motor overload fault within 1 minute, then P9-32=1.5 \times 1/2.2=0.68.

P9-33 Motor overload warning coefficient Setting Range: 50% ~ 100% Default: 90%

This function is used to give a warning signal to the control system via DO before motor overload protection. This parameter is used to determine the percentage, at which pre-warning is performed before motor overload. The larger the value is, the less advanced the pre-warning will be.

When the accumulative output current of the AC drive is greater than the value of the overload inverse time-lag curve multiplied by P9-33, the D0 terminal on the AC drive allocated with function " Motor overload pre-warning " becomes ON.

P9-34	Recognize voltage at instantaneous stop action	Setting Range: 0 ~ 100%	Default: 80%
	Recognize voltage at instantaneous stop pause		Default: 80%

P9-38

P9-39

Deceleration level of load becoming 0	Setting Range: 0.0 ~ 100.0%	Default: 10.0%
Deceleration time of load becoming 0	Setting Range: 0.0 ~ 60.0s	Default: 1.0s

If protection upon load becoming 0 is valid, when the output current of the AC drive is lower than the detection level (P9-38) and the lasting time exceeds the detection time (P9-39), the output frequency of the AC drive automatically declines to 7% of the rated frequency. During the protection, the AC drive automatically accelerates to the set frequency if the load resumes to normal.

P9-40	Over-speed detection value	Setting Range: 0.0 ~ 50.0%	Default: 20.0%
P9-41	Over-speed detection time	Setting Range: 0.0 ~ 60.0s	Default: 1.0s

This function is valid only when the AC drive runs in the CLVC mode.

If the actual motor rotational speed detected by the AC drive exceeds the maximum frequency and the excessive value is greater than the value of P9-40 and the lasting time exceeds the value of P9-41, the AC drive reports Err43 and acts according to the selected fault protection action.

If the over-speed detection time is 0.0s, the over-speed detection function is valid.

P9-42	Detection value of too large speed deviation	Setting Range: 0.0 ~ 50.0%	Default: 20.0%
P9-43	Detection time of too large speed deviation	Setting Range: 0.0 ~ 60.0s	Default: 5.0s

This function is valid only when the AC drive runs in the CLVC mode.

If the AC drive detects the deviation between the actual motor rotational speed detected by the AC drive and the set frequency is greater than the value of P9-42 and the lasting time exceeds the value of P9-43, the AC drive reports Err42 and according to the selected fault protection action.

If P9-43 (Detection time of too large speed deviation) is 0.0s, this function is valid.

P9-44	Overvoltage stall gain	Setting Range: 0 ~ 100	Default: 0%
P9-45	Overvoltage stall protective voltage	Setting Range: 120% ~ 150%	Default: 130%

When the DC bus voltage exceeds the value of P9-45 (Overvoltage stall protective voltage) during deceleration of the AC drive, the AC drive stops deceleration and keeps the present running frequency. After the bus voltage declines, the AC drive continues to decelerate.

P9-44 (Overvoltage stall gain) is used to adjust the overvoltage suppression capacity of the AC drive. The larger the value is, the greater the overvoltage suppression capacity will be.

P9-46	Overvoltage stall gain	Setting Range: 0 ~ 100	Default: 20
P9-47	Overcurrent stall protective current	Setting Range: 100% ~ 200%	Default: 150%

When the output current exceeds the overcurrent stall protective current during acceleration/deceleration of the AC drive, the AC drive stops acceleration/deceleration and keeps the present running frequency. After the output current declines, the AC drive continues to accelerate/decelerate. See Figure 6-24 for details.

P9-47 (Overcurrent stall protective current):Select the current protection point of overcurrent stall function. Beyond this parameter, the AC drive starts to perform the overcurrent stall protection current function. This value is a percentage of the rated current of the motor.

FC6000

P9-46 (Overcurrent stall gain) is used to adjust the overcurrent suppression capacity of the AC drive. The larger the value is, the greater the overcurrent suppression capacity will be. In the prerequisite of no overcurrent occurrence, set tF9-05 to a small value.

For small-inertia load, the value should be small. Otherwise, the system dynamic response will be slow. For large-inertia load, the value should be large. Otherwise, the suppression result will be poor and overcurrent fault may occur.

If the overcurrent stall gain is set to 0, the overcurrent stall function is valid.

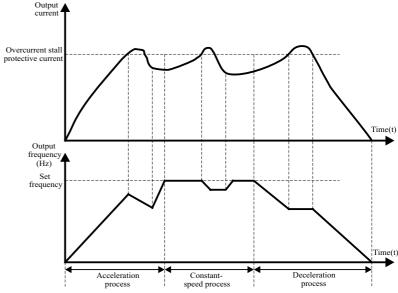


Figure 6-24 Diagram of the overcurrent stall protection function

P9-48	Input phase loss protection level	Setting Range: 1 ~ 200%	Default: 20%
P9-49	Input phase loss protection delay	Setting Range: 2 ~ 250.0s	Default: 8s

Through software measure the DC bus line wave situation to judge whether it is the status that input lack phase, judge these two function code of the machine invalid through the hardware. When bus line verification wave value reach up to P9-48 and time exceed P9-49, judge it as input lack phase. Under the motor unloading or stop status, because too small loading, the input lack phase judgement will not be triggered.

P9-50 Protection action selection 1 Setting Range: 0000 ~ 2222 Default: 0000

Function parameters description

BIT 0: (Motor overload, Err11)

0: Coast to stop

1: Stop according to the stop mode

2: Continue to run

BIT 1: (Power input phase loss, Err12)

Same as BIT 0

BIT 2: (Power output phase loss, Err13)

Same as BIT 0

BIT 3: (External equipment fault, Err15)

Same as BIT 0

P9-51 Protection action selection 2 Setting Range: 00000 ~ 2222 Default: 0000

BIT 0: (Communication fault, Err16)

Same as BIT 0 in P9-50

BIT 1: (Encoder fault, Err20)

0: Coast to stop

1: Switch over to V/F control, stop according to the stop mode

2: Switch over to V/F control, continue to run

BIT 2: (EEPROM read-write fault, Err21)

0: Coast to stop

1: Stop according to the stop mode

BIT 3: (Motor overheat, Err25)

Same as BIT 0

P9-52 Protection action selection 3	Setting Range: 0000 ~ 2222	Default: 0000
-------------------------------------	----------------------------	---------------

BIT 0: (Communication fault, Err16)

Same as BIT 0 in P9-50

BIT 1: (Encoder fault, Err20)

0: Coast to stop

- 1: Switch over to V/F control, stop according to the stop mode
- 2: Switch over to V/F control, continue to run

BIT 2: (EEPROM read-write fault, Err21)

0: Coast to stop

1: Stop according to the stop mode

BIT 3: (Motor overheat, Err25)

Same as BIT 0

P9-53 Protection action selection 4 Setting Range: 0000 ~ 2222 Default: 0000

BIT 0: (PID feedback lost during running, Err31)

Same as BIT 0 in PB-01

BIT 1: (Too large speed deviation, Err42)

Same as BIT 0

BIT 2: (Motor over-speed, Err43)

Same as BIT 0

BIT 3: (Initial position fault, Err51)

Same as BIT 0

P9-54	Protection action selection 5	Setting Range: 0000 ~ 0002	Default: 0
F 3-34	Frotection action selection 5	Setting Range. 0000 0002	Delaart. 0

BIT 0: (Speed feedback fault, Err52)

Same as BIT 0 in PB-01

BIT 1: Reserved

BIT 2: Reserved

BIT 3: Reserved

P9-58	Instantaneous stop and non- stop gain Kp	Setting Range: 0 ~ 100	Default: 40			
P9-59	Instantaneous stop and non- stop integral coefficient Ki	Setting Range: 0 ~ 100	Default: 30			

5.11 PA: Process Control PID Function

PID control is a general process control method. By performing proportional, integral and differential operations on the difference between the feedback signal and the target signal, it adjusts the output frequency and constitutes a feedback system to stabilize the controlled counter around the target value.

It is applied to process control such as flow control, pressure control and temperature control. The following figure shows the principle block diagram of PID control. Figure 6-26 Principle block diagram of PID control

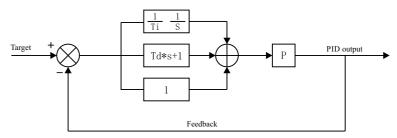


Figure 6-26 Principle blcok diagram of PID control

PA-00	PID setting source	Setting Range: 0 ~ 8	Default: 0
PA-01	PID digital setting	Setting Range: 0.00 ~ PA-05	Default: 0.5Mpa

PA-00 is used to select the channel of target process PID setting.

The PID setting is a relative value and ranges from 0.00 to PA-05. The PID feedback is also a relative value. The purpose of PID control is to make the PID setting and PID feedback equal.

PA-02	PID feedback source	Setting Range: 0 ~ 9	Default: 2
PA-03	PID digital feedback	Setting Range: 0.00 ~ PA-05	Default: 1.00Mpa

This parameter is used to select the feedback signal channel of process PID. The PID feedback is a relative value and ranges from 0.00 to PA-05

PA-04	Feedback signal gain	Setting Range: 0.00 ~ 10.00	Default: 1.00
-------	----------------------	-----------------------------	---------------

This function is used to amplify or reduce the input signal of the feedback channel.

P	A-05	Feedback signal range	Setting Range: 0 ~ 655.35	Default: 1.00

This function used to correct PID give quantity and indicate data of PID feedback quantity.

Example when at pressure control and set at the max pressure of sensor then indicate value is the pressure actual value.

Suppose use the outer voltage terminal (VS1) as the feedback signal input passageway, the down limit voltage is 0.5V when set (VS1) up limit voltage at 9V; current feedback voltage value is 4.5V, the max measure range of sensor is 30mpa.

Digit pipe indicate value= $(4.5-0.5) \times 20/(9-0.5) = 9.4$ mpa

PA-06 PID control direction 1	Setting Range: 0000 ~ 1121	Default: 0000
-------------------------------	----------------------------	---------------

BIT 0:Feedback feature selection

- 0: Forward action: When the feedback value is smaller than the PID setting, the AC drive's output frequency rises. For example, the winding tension control requires forward PID action.
- 1: Reverse action: When the feedback value is smaller than the PID setting, the AC drive's output frequency reduces. For example, the unwinding tension control requires

Note that this function is influenced by the DI function 35 "Reverse PID action direction". BIT 1:PID parameter switchover condition

- 0: No switchover
- 1: Switchover via DI
- 2: Automatic switchover based on deviation

The switchover can be implemented either via a DI terminal or automatically implemented based on the deviation.

If you select switchover via a DI terminal, the DI must be allocated with function 27 "PID parameter switchover". If the DI is OFF, group 1 (PA-08 to PA-10) is selected. If the DI is ON, group 2 (PA-18 to PA-20) is selected.

BIT 2:Integral separated

- 0: Invalid 1: Valid
- If it is set to valid, , the PID integral operation stops when the DI allocated with function 22 "PID integral pause" is ON In this case, only proportional and differential operations take effect.
- If it is set to invalid, integral separated remains invalid no matter whether the DI allocated with function 22 "PID integral pause" is ON or not.

BIT 3:Whether to stop integral operation when the output reaches the limit

- 0: Continue integral operation
- 1: Stop integral operation
- If "Stop integral operation" is selected, the PID integral operation stops, which may help to reduce the PID overshoot.

PA-07	PID control direction 2	Setting Range: 0000 ~ 0011	Default: 00
-------	-------------------------	----------------------------	-------------

BIT 0:PID shutdown operation

- 0: Shutdown without calculation
- 1: Operation when shutdown

It is used to select whether to continue PID operation in the state of stop. Generally, the PID operation stops when the AC drive stops.

BIT 1:Constant pressure water supply sleep function 1: Valid

0: Invalid

FC6000

PA-08	Proportional gain Kp1	Setting Range: 0.00 ~ 100.00	Default: 20.00
PA-09	Integral time Ti1	Setting Range: 0.00 ~ 10.00s	Default: 2.00s
PA-10	Differential time Td1	Setting Range: 0.000 ~ 10.000s	Default: 0.000s

Proportional gain Kp1

It decides the regulating intensity of the PID regulator. The higher the Kpl is, the larger the regulating intensity is. The value 100.0 indicates when the deviation between PID feedback and PID setting is 100.0%, the adjustment amplitude of the PID regulator on the output frequency reference is the maximum frequency.

Integral time Ti1

It decides the integral regulating intensity. The shorter the integral time is, the larger the regulating intensity is. When the deviation between PID feedback and PID setting is 100.0%, the integral regulator performs continuous adjustment for the time set in FAO6. Then the adjustment amplitude reaches the maximum frequency.

Differential time Td1

It decides the regulating intensity of the PID regulator on the deviation change. The longer the differential time is, the larger the regulating intensity is. Differential time is the time within which the feedback value change reaches 100.0%, and then the adjustment amplitude reaches the maximum frequency.

PA-11	Cut-off frequency of	Setting Range:	Default: 2.00Hz
PA-11	PID reverse rotation	0.00 ~ Maximum frequency	Default. 2.00HZ

In some situations, only when the PID output frequency is a negative value (AC drive reverse rotation), PID setting and PID feedback can be equal. However, too high reverse rotation frequency is prohibited in some applications, and PA-11 is used to determine the reverse rotation frequency upper limit.

PA-12	PID deviation limit	Setting Range: 0.0 ~ 100.0%	Default: 0.0%
-------	---------------------	-----------------------------	---------------

If the deviation between PID feedback and PID setting is smaller than the value of PA-12, PID control stops. The small deviation between PID feedback and PID setting will make the output frequency stabilize, effective for some closed-loop control applications.

PA-13	PID differential limit	Setting Range: 0.00 ~ 100.00%	Default: 0.10%
-------	------------------------	-------------------------------	----------------

It is used to set the PID differential output range. In PID control, the differential operation may easily cause system oscillation. Thus, the PID differential regulation is restricted to a small range.

PA-14	PID setting change time	Setting Range: 0.00 ~ 10.00s	Default: 0.00s
-------	-------------------------	------------------------------	----------------

The PID setting change time indicates the time required for PID setting changing from 0.0% to 100.0%.

PA-15	PID feedback filter time	Setting Range: 0.00 ~ 650.00s	Default: 0.00s
PA-16	PID output filter time	Setting Range: 0.00 ~ 60.00s	Default: 0.00s

PA-15 is used to filter the PID feedback, helping to reduce interference on the feedback but slowing the response of the process closed-loop system. PA-16 is used to filter the PID output frequency, helping to weaken sudden change of the AC drive output frequency but slowing the response of the process closed-loop system.

PA-17	Reserved	Setting Range: -	Default: -
PA-18	Proportional gain Kp2	Setting Range: 0.00 ~ 100.00	Default: 20.00
PA-19	Integral time Ti2	Setting Range: 0.00 ~ 10.00s	Default: 2.00s
PA-20	Differential time Td2	Setting Range: 0.000 ~ 10.000s	Default: 0.000s
PA-21	PID parameter switchover deviation 1	Setting Range: 0.0% ~ PA-22	Default: 20.0%
PA-22	PID parameter switchover deviation 2	Setting Range: PA-21 ~ 100.0%	Default: 80.0%

In some applications, PID parameters switchover is required when one group of PID parameters cannot satisfy the requirement of the whole running process.

These parameters are used for switchover between two groups of PID parameters. Regulator parameters PA-19 to PA-20 are set in the same way as PA-08 to PA-10.

If the BIT 0 in PA-05 is selected as automatic switchover, when the absolute value of the deviation between PID feedback and PID setting is smaller than the value of PA-21, group 1 is selected. When the absolute value of the deviation between PID feedback and PID setting is higher than the value of PA-22, group 2 is selected. When the deviation is between PA-21 and PA-22, the PID parameters are the linear interpolated value of the two groups of parameter values.

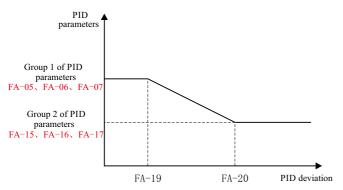


Figure 6-27 PID parameters switchover

PA-23	PID initial value	Setting Range: 0.00 ~ 100.0%	Default: 0.0%
PA-24	PID initial value holding time	Setting Range: 0.0 ~ 6500.0s	Default: 0.0s

When the AC drive starts up, the PID starts closed-loop algorithm only after the PID output is fixed to the PID initial value (PA-23) and lasts the time set in PA-24. Figure 6-28 PID initial value function

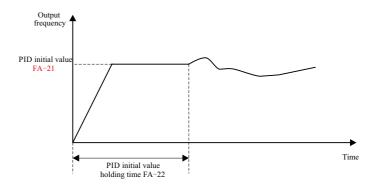


Figure 6-28 PID initial value function

PA-25	Maximum deviation between two PID outputs in forward direction	Setting Range: 0.00% ~ 100.00%	Default: 1.00%
PA-26	Maximum deviation between two PID outputs in reverse direction	Setting Range: 0.00% ~ 100.00%	Default: 1.00%

This function is used to limit the deviation between two PID outputs (2 ms per PID output) to suppress the rapid change of PID output and stabilize the running of the AC drive.

PA-25 and PA-26 respectively correspond to the maximum absolute value of the output deviation in forward direction and in reverse direction.

PA-27	Feedback offline alarm test value	Setting Range: 0.0 ~ 100.0%	Default: 0.0%
PA-28	Feedback offline test time	Setting Range: 0.0 ~ 120.0s	Default: 1.0s

This function code used to judge whether PID feedback loss.

When PID feedback quantity less than feedback loss test value FA-26 and after the duration exceed PID feedback loss test time FA-27, the AC drive alarm failure Err31, and handle according to the selected failure handle method.

PA-2	Dormant judge base	Setting Range: 0.1 ~ 100.0%	Default: 95.0%
PA-3	Dormant base duration	Setting Range: 0.1 ~ 6500.0s	Default: 30.0s

PA-07 decade's dormant function valid, if (feedback value > give value * PA-29) then start dormant judge and time exceed PA-30 then start reduce frequency to PA-32

PA-31	Dormant sense moderate time	Setting Range: 0.1 ~ 6500.0s	Default: 60.0s
-------	-----------------------------	------------------------------	----------------

Set the moderate time when AC drive reduce frequency during the dormant sense process.

unction	parameters	descri	ption
---------	------------	--------	-------

PA-32	Dormant low position keep frequency	Setting Range: 0.00 ~ 20.00Hz	Default: 10.00Hz

Set the keep time when AC drive at low position during the dormant sense process.

PA-33	Low position frequency running time	Setting Range: 0.0 ~ 6500.0s	Default: 10.0s
-------	-------------------------------------	------------------------------	----------------

Enter into dormant status if output frequency <= PA-32 and time and time exceed PA-33 then output 0 frequency and enter into dormant status.

PA-34	Wake up base	Setting Range: 0.0 ~ 100.0%	Default: 50.0%
PA-35	Wake up base duration	Setting Range: 0.0 ~ 6500.0s	Default: 30.0s

When (feedback value < give value*PA-34) then start wake up judgement, if time exceed PA-35 then withdraw the dormant status.

5.12 Group PB: Communication Control Function Parameter Group

PB-00 Master and slave selection	Setting Range: 0 ~ 1	Default: 0
----------------------------------	----------------------	------------

Select the AC drive as the master or slave in Modbus Communication. For details of Modbus communication, please refer to Appendix II (RS485 communication protocol).

0: Slave

The AC drive as sub machine, the communication address set by parameter PB-01. Now the AC drive accept the order of main machine on communication internet, and whether reply data according to parameter PB-01 set select writing operation, the delay time of reply order set by the parameter PB-05.

1: Master

The AC drive as main machine, transmit the main machine data to communication internet through broadcast order, all sub machine all accept the main machine order. The main machine transmit data set by parameter PB-09.

PB-01	Local address	Setting Range: 1 ~ 247	Default: 1
-------	---------------	------------------------	------------

This parameter define the communication address when this machine as sub machine. If this machine as main machine, this parameter nonsense. 0 is the broadcast address.

PB-02	Baud rate selection	Setting Range: 0 ~ 7	Default: 3
-------	---------------------	----------------------	------------

Set the baud rate for communication. If the baud rate settings are different, communication will not be possible.

0: 1200bps 1: 2400bps 2: 4800bps 3: 9600bps 4: 19200bps 5: 38400bps 6: 57600bps 7: 115200bps

PB-03 Date format Setting Range: 0 ~ 5 Default: 3

0: (N, 8, 1) No check, data format: 8, stop bit: 1

FC6000

- 1: (E, 8, 1) Even parity check, data format: 8, stop bit: 1
- 2: (0, 8, 1) Odd Parity check, data format: 8, stop bit: 1
- 3: (N, 8, 2) No check, data format: 8, stop bit: 2
- 4: (E, 8, 2) Even parity check, data format: 8, stop bit: 2
- 5: (0, 8, 2) Odd Parity check, data format: 8, stop bit: 2

PB-04	Communication proportion setting	Setting Range: 0.000 ~ 5.000	Default: 1.000
-------	----------------------------------	------------------------------	----------------

The communication instructions sent by the upper computer are multiplied by this parameter as the communication given value or feedback value of the machine. The communication instructions of the upper computer can be modified in proportion.

It refers to the intermediate interval between the end of data acceptance of the AC drive and the sending of data to the upper computer. If the response delay is less than the system processing time, the response delay shall be subject to the system processing time. If the response delay is longer than the system processing time, the system shall delay waiting after data processing, and send data to the upper computer until the response delay time is up.

PB-05	Response delay	Setting Range: 0.000 ~ 0.500	Default: 0.000s
1 0 0 0		Section 9 manager cross	Delault. 0.0003

It refers to the intermediate interval between the end of data acceptance of the AC drive and the sending of data to the upper computer. If the response delay is less than the system processing time, the response delay shall be subject to the system processing time. If the response delay is longer than the system processing time, the system shall delay waiting after data processing, and send data to the upper computer until the response delay time is up.

PB-06	Communication timeout	Setting Range: 0.0 ~ 100.0	Default: 1.0s
-------	-----------------------	----------------------------	---------------

If the interval between the first communication and the next communication exceeds the communication timeout, the communication is considered to be broken, and BIT 0 in P9-51 determines the action mode of fault disconnection.

PB-07 T	Transmit response handle	Setting Range: 0 ~ 1	Default: 0
---------	--------------------------	----------------------	------------

This parameter select whether AC drive responding when host computer send write operation order to AC drive. If host computer need AC drive reply information, the AC drive will time sharing occupy communication bus line, when do communication control, the host computer need keep enough time to reply information to AC drive. If needn't AC drive reply information, only send order to AC drive, can select write operation without responding to improve the utilize efficiency of communication bus line. This parameter only valid to write operation, no affection to read operation.

- 0: Write operation has responding
- 1: Write operation no responding

•

PB-08 Selection of data source from master Setting Range: 0000 ~ AAAA Default: 0031

The data which send to sub machine when set the AC drive as communication main machine. Now the main machine AC drive send broadcast order, all sub machine will received the main machine sent orders, The main machine max send 4 frame data through circle inquiry method, respectively corresponding the set value of unit of LED, decade, hundred digit and thousand digit. Not send data when set as invalid.

BIT 0: the first group send frame selection

0:Invalid 1:Operating order given

2:Main machine given frequency 3:Main machine output frequency 4:Main machine up limit frequency 5:Main machine given torque(Keep)

6: Main machine output torque 7: Main machine torque control corotation

speed limit(Keep)

8: Main machine torque control reversal speed limit (Keep)

9: Main machine given PID

A:Main machine feedback PID

BIT 1: the second group send frame selection

Same as above

BIT 2: the third group send frame selection

Same as above

BIT 3: the fourth group send frame selection

Same as above

5.13 Group PC: Optimization parameters

PC-00	Carriage frequency characteristic select	Setting Range: 0000 ~ 0A11	Default: 000
-------	---	----------------------------	--------------

BIT 1:

0:Fix carriage frequency

1: the carriage frequency adjust along with the temperature

The carriage frequency adjust along with the temperature, means the AC drive measure the heat radiation self temperature more higher then automatically reduce the carriage wave frequency, convenient for reduce the rise temperature of AC drive. When radiator temperature a little lower, carriage frequency gradually recover to set value. This function able to reduce the overheat alarm of AC drive.

BIT 1:

0: Asynchronous modulation

1: Synchronous modulation

This parameter is valid only for V/F control.

Synchronous modulation indicates that the carrier frequency varies linearly with the change of the output frequency, ensuring that the ratio of carrier frequency to output frequency remains unchanged. Synchronous modulation is generally used at high output frequency, which helps improve the output voltage quality.

At low output frequency (100 Hz or lower), synchronous modulation is not required. This is because asynchronous modulation is preferred when the ratio of carrier frequency to output frequency is high.

Synchronous modulation takes effect only when the running frequency is higher than 85 Hz. If the frequency is lower than 85 Hz, asynchronous modulation is always used.

BIT 2:

FC6000

0: Random PWM invalid

1:Random PWM depth

The setting of random PWM depth can make the shrill motor noise softer and reduce the electromagnetic interference. If this parameter is set to 0, random PWM is invalid. BIT 3:reserved

PC-01	DPWM switchover frequency upper limit	Setting Range: 0.00 ~ 15.00Hz	Default: 12.00Hz
	ricquericy apper mine		

It is used to determine the wave modulation mode in V/F control of asynchronous motor. If the frequency is lower than the value of this parameter, the waveform is 7-segment continuous modulation. If the frequency is higher than the value of this parameter, the waveform is 5-segment intermittent modulation.

The 7-segment continuous modulation causes more loss to switches of the AC drive but smaller current ripple. The 5-segment intermittent modulation causes less loss to switches of the AC drive but larger current ripple. This may lead to motor running instability at high frequency. Do not modify this parameter generally.

PC-02	Cooling fan control	Setting Range: 0 ~ 1-A	Default: 0
-------	---------------------	------------------------	------------

It is used to set the working mode of the cooling fan. If this parameter is set to 0, the fan works when the AC drive is in running state. When the AC drive stops, the cooling fan works if the heat-sink temperature is higher than 40° C, and stops working if the heat-sink temperature is lower than 40° C. If this parameter is set to 1, the cooling fan keeps working after power-on.

PC-03	Rapid current limit	Setting Range: 0~1	Default: 1
-------	---------------------	--------------------	------------

The rapid current limit function can reduce the AC drive's over-current faults at maximum, guaranteeing uninterrupted running of the AC drive.

However, long-time rapid current limit may cause the AC drive to overheat, which is not allowed. In this case, the AC drive will report Err40, indicating the AC drive is overloaded and needs to stop.

PC-04	Dead zone	Setting Range: 0~2	Default: 1
	compensation mode		

Generally, you need not modify this parameter. Try to use a different compensation mode only when there is special requirement on the output voltage waveform quality or oscillation occurs on the motor.

PC-05	Current detection compensation	Setting Range: 200 ~ 2000.0V	Default: 690
-------	--------------------------------	------------------------------	--------------

It is used to set the AC drive current detection compensation. Too large value may lead to deterioration of control performance. Do not modify it generally.

PC-06	Action voltage of energy consumption braking	Setting Range: 0 ~ 100%	Default: 100%
PC-07	Overvoltage threshold	Setting Range: 0 ~ 2500.0V	Default: 810.0V

It is used to set the overvoltage threshold of the AC drive. The default values of different voltage classes are listed in the following table:

Voltage Class	Factory Value of Overvoltage point
Single-phase 220 V	400V
Three-phase 220 V	400V
Three-phase 380 V	810V
Three-phase 480 V	890V

PC-08	Bus undervoltage protection value	Setting Range: 200 ~ 2000.0V	Default: 350V
-------	-----------------------------------	------------------------------	---------------

It is used to set the undervoltage threshold of Err09. The undervoltage threshold 100% of the AC drive of different voltage classes corresponds to different nominal values, as listed in the following table.

Voltage Class	Factory Value of Overvoltage point
Single-phase 220 V	200V
Three-phase 220 V	200V
Three-phase 380 V	350V
Three-phase 480 V	450V

PC-09	Lack voltage failure handle method	Setting Range: 0 ~ 2	Default: 0
PC-10	Lack voltage recover allowable time	Setting Range: 0.1 ~ 60.0s	Default: 2.0s

Set the handle method when happen lack voltage situation 0:Failure

1:If the voltage recover normal value when in lack voltage recover allowable time PC-10 then continue operating

2:Continue running after power supply recover to be normal

PC-11	The method of restart after power off	Setting Range: 0~1	Default: 0
PC-12	The waiting time of restart after power off	Setting Range: 0.00 ~ 120.0s	Default: 3.00s

The action selection of restart after power off:

0:Invalid

The AC drive power on after power off must running after received the running order. When at keyboard running control, RS485 communication control or select purchase card running, if AC drive occur power off then automatically clean the running order. When outer terminal control running, if AC drive occur power off, execute running order according to [F1.31] set value after power on again.

1: Valid

FC6000

If before power supply cut off and AC drive be at running status, then after recover the power supply and set waiting time(set by PC-12), the AC drive will automatically start. The AC drive not accept running order within the waiting time of power off and start again, but if input stop machine order during this period then AC drive release re-start status.

Note: power off and restart function can make the AC drive automatic start running after recover supply power. So, this major fortuity, please carefully adopt for human body and equipment safety. Power off and restart waiting time: when PC-11 set as valid, after AC drive power supply power on, will start running after waited the PC-12 set time. The set principle of this time mainly based on the factors that other equipment working recover preparation time relate to AC drive after recover power supply.

Power off and restart waiting time: when PC-11 set as valid, after AC drive power supply power on, will start running after waited the PC-12 set time. The set principle of this time mainly based on the factors that other equipment working recover preparation time relate to AC drive after recover power supply.

5.14 Group PD: Multi-Reference and Simple PLC Function

PD-00	Multi-band frequency 1		Default: 20.0%
PD-01	Multi-band frequency 2		Default: 40.0%
PD-02	Multi-band frequency 3		Default: 60.0%
PD-03	Multi-band frequency 4		Default: 80.0%
PD-04	Multi-band frequency 5		Default: 100.0%
PD-05	Multi-band frequency 6		Default: 80.0%
PD-06	Multi-band frequency 7	Setting Range: 0 ~ 100.0%	Default: 60.0%
PD-07	Multi-band frequency 8	Setting Range: 5 100.076	Default: 40.0%
PD-08	Multi-band frequency 9		Default: 20.0%
PD-09	Multi-band frequency 10		Default: 40.0%
PD-10	Multi-band frequency 11		Default: 60.0%
PD-11	Multi-band frequency 12		Default: 80.0%
PD-12	Multi-band frequency 13		Default: 100.0%
PD-13	Multi-band frequency 14		Default: 80.0%
PD-14	Multi-band frequency 15		Default: 60.0%

The EC6000 multi-reference has many functions. Besides multi-speed, it can be used as the setting source of the V/F separated voltage source and setting source of process PID. In addition, the multi-reference is relative value.

Multi-reference can be the setting source of frequency, V/F separated voltage and process PID. The multi-reference is relative value and ranges from -100.0% to 100.0%.

As frequency source, it is a percentage relative to the maximum frequency. As V/F separated voltage source, it is a percentage relative to the rated motor voltage. As process PID setting source, it does not require conversion. Multi-reference can be swi-

FC6000

tched over based on different states of DI terminals. For details, see the descriptions of group P4.

PD-15 PLC running mode selection | Setting Range: 0000 ~ 2122 Default: 0000

It is used to select the PLC running mode controlled by the program.

BIT 0:Circulation mode

0: Stop after the AC drive runs one cycle

After receiving the operation instruction, the AC drive starts to run from the first section of speed, and the time unit is set by the BIT 1 of PD-15; the operation time is set by the parameter PD-16 ~ 30: the operation direction and acceleration/deceleration time are selected by the parameter PD-31~45; when the operation time arrives, it will move to the next section of speed, and the operation time, direction and acceleration / deceleration time of each section of speed can be set separately; after the operation of the 15th section of speed Frequency converter output "0". If a phase runs at zero time, the run-time skips that phase.

1:Repeat after the AC drive runs one cycle

After the 15th speed of the AC drive, return to the 1st speed and start the operation again. The time unit is set by the BIT 1 of PD-15; the operation time is set by the parameters PD-16~30; the operation direction and acceleration/deceleration time are selected by the parameters PD-31 ~ 45.

2: Keep final values after the AC drive runs one cycle

The AC drive will not stop after running a single cycle, and will continue to run at the speed of the last stage with the running time not zero. The time unit is set by the BIT 1 of PD-15: the operation time is set by the parameters PD-16 ~ 30: the operation direction and acceleration/deceleration time are selected by the parameters PD-31 ~ 45.

BIT 1: Timing unit: used to set the time unit of timing when the program is running.

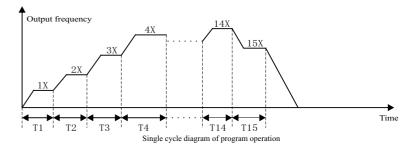
0:Second 1:Minute 2:Hour

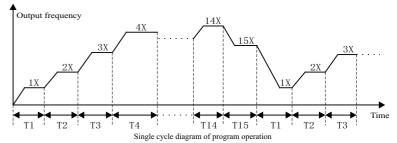
BIT 2: PLC retentive selection mode

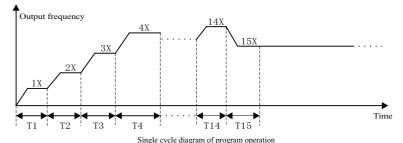
0: No storage 1: storage

This parameter is defined as whether to store the current status of program operation (number of operation stages, remaining time of this stage, acceleration and deceleration, operation direction, etc.) after power failure of AC drive when program operation is selected. If the power-off storage is selected, the BIT 4 parameter of PD-15 can be used to define the recovery mode of program operation after the next power on. If you want to ensure that the inverter can continue the state before power failure after the restoration of instantaneous power failure, you should set this parameter to "1".

BIT 3:Start mode


This parameter defines the operation mode when the program is started again after interruption due to various reasons (shutdown, fault, power failure, etc.).


Select "0" mode and the AC drive will restart at the first speed.


Select "1" mode and the AC drive will interrupt the instantaneous operation phase and run again.

Select "1" mode and the AC drive will run at the operation stage of the interruption moment according to the remaining time of the interruption moment.

Note: The output frequency of the program is limited by the upper and lower frequency. When the given frequency is less than the lower limit frequency, press [F0.13] lower limit frequency operation mode to operate.

PD-16	Running time of PLC reference 1		
PD-17	Running time of PLC reference 2		
PD-18	Running time of PLC reference 3		
PD-19	Running time of PLC reference 4		
PD-20	Running time of PLC reference 5	Setting Range: $0.0 \sim 6500.0 (s/m/h)$	Default: 10.0
PD-21	Running time of PLC reference 6		
PD-22	Running time of PLC reference 7		
PD-23	Running time of PLC reference 8		
PD-24	Running time of PLC reference 9		

PD-25	Running time of PLC reference 10		
PD-26	Running time of PLC reference 11		
PD-27	Running time of PLC reference 12	Setting Range:	Defectly 100
PD-28	Running time of PLC reference 13	0.0~6500.0(s/m/h)	Default: 10.0
PD-29	Running time of PLC reference 14		
PD-30	Running time of PLC reference 15		

Set the running time of PLC reference 15, and the time unit is determined by the setting value of [FC.15] BIT 1.

PD-31 PLC1 direction and acceleration/deceleration PD-32 PLC2 direction and acceleration/deceleration PD-33 PLC3 direction and acceleration/deceleration PD-34 PLC4 direction and acceleration/deceleration PD-35 PLC5 direction and acceleration/deceleration PD-36 PLC6 direction and acceleration/deceleration PD-37 PLC7 direction and acceleration/deceleration PD-38 PLC8 direction and acceleration/deceleration PD-39 PLC9 direction and acceleration/deceleration PD-40 PLC10 direction and acceleration/deceleration PD-41 PLC10 direction and acceleration/deceleration PD-42 PLC12 direction and acceleration/deceleration PD-43 PLC13 direction and acceleration/deceleration PD-44 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and acceleration/deceleration PD-45 PLC15 direction and acceleration/deceleration				
PD-32 PLC2 direction and acceleration/deceleration PD-33 PLC3 direction and acceleration/deceleration PD-34 PLC4 direction and acceleration/deceleration PD-35 PLC5 direction and acceleration/deceleration PD-36 PLC6 direction and acceleration/deceleration PD-37 PLC7 direction and acceleration/deceleration PD-38 PLC8 direction and acceleration/deceleration PD-39 PLC9 direction and acceleration/deceleration PD-40 PLC10 direction and acceleration/deceleration PD-41 PLC11 direction and acceleration/deceleration PD-42 PLC12 direction and acceleration/deceleration PD-43 PLC13 direction and acceleration/deceleration PD-44 PLC13 direction and acceleration/deceleration PD-45 PLC14 direction and acceleration/deceleration PD-46 PLC15 direction and acceleration/deceleration	PD-31			
PD-32 acceleration/deceleration PD-33 PLC3 direction and acceleration/deceleration PD-34 PLC4 direction and acceleration/deceleration PD-35 PLC5 direction and acceleration/deceleration PD-36 PLC6 direction and acceleration/deceleration PD-37 PLC7 direction and acceleration/deceleration PD-38 PLC8 direction and acceleration/deceleration PD-39 PLC9 direction and acceleration/deceleration PD-40 PLC10 direction and acceleration/deceleration PD-41 PLC11 direction and acceleration/deceleration PD-42 PLC12 direction and acceleration/deceleration PD-43 PLC13 direction and acceleration/deceleration PD-44 PLC13 direction and acceleration/deceleration PD-45 PLC14 direction and acceleration/deceleration PD-46 PLC15 direction and acceleration/deceleration		<u> </u>		
PD-33 PLC3 direction and acceleration/deceleration PD-34 PLC4 direction and acceleration/deceleration PD-35 PLC5 direction and acceleration/deceleration PD-36 PLC6 direction and acceleration/deceleration PD-37 PLC7 direction and acceleration/deceleration PD-38 PLC8 direction and acceleration/deceleration PD-38 PLC9 direction and acceleration/deceleration PD-39 PLC9 direction and acceleration/deceleration PD-40 PLC10 direction and acceleration/deceleration PD-41 PLC11 direction and acceleration/deceleration PD-42 PLC12 direction and acceleration/deceleration PD-43 PLC13 direction and acceleration/deceleration PD-44 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and acceleration/deceleration	PD-32			
PD-33 acceleration/deceleration PD-34 PLC4 direction and acceleration/deceleration PD-35 PLC5 direction and acceleration/deceleration PD-36 PLC6 direction and acceleration/deceleration PD-37 PLC7 direction and acceleration/deceleration PD-38 PLC8 direction and acceleration/deceleration PD-39 PLC9 direction and acceleration/deceleration PD-40 PLC10 direction and acceleration/deceleration PD-41 PLC11 direction and acceleration/deceleration PD-42 PLC12 direction and acceleration/deceleration PD-43 PLC13 direction and acceleration/deceleration PD-44 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and acceleration/deceleration PD-46 PLC15 direction and acceleration/deceleration		<u> </u>		
PD-34 PLC4 direction and acceleration/deceleration PD-35 PLC5 direction and acceleration/deceleration PD-36 PLC6 direction and acceleration/deceleration PD-37 PLC7 direction and acceleration/deceleration PD-38 PLC8 direction and acceleration/deceleration PD-39 PLC9 direction and acceleration/deceleration PD-40 PLC10 direction and acceleration/deceleration PD-41 PLC11 direction and acceleration/deceleration PD-42 PLC12 direction and acceleration/deceleration PD-43 PLC13 direction and acceleration/deceleration PD-44 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and acceleration/deceleration PD-46 PLC16 direction and acceleration/deceleration PD-47 PLC18 direction and acceleration/deceleration PD-48 PLC19 direction and acceleration/deceleration	PD-33			
PD-34 acceleration/deceleration PD-35 PLC5 direction and acceleration/deceleration PD-36 PLC6 direction and acceleration/deceleration PD-37 PLC7 direction and acceleration/deceleration PD-38 PLC8 direction and acceleration/deceleration PD-39 PLC9 direction and acceleration/deceleration PD-40 PLC10 direction and acceleration/deceleration PD-41 PLC11 direction and acceleration/deceleration PD-42 PLC12 direction and acceleration/deceleration PD-43 PLC13 direction and acceleration/deceleration PD-44 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and acceleration/deceleration PD-46 PLC16 direction and acceleration/deceleration	1 5 33	acceleration/deceleration		
acceleration/deceleration PD-35 PLC5 direction and acceleration/deceleration PD-36 PLC6 direction and acceleration/deceleration PD-37 PLC7 direction and acceleration/deceleration PD-38 PLC8 direction and acceleration/deceleration PD-39 PLC9 direction and acceleration/deceleration PD-40 PLC10 direction and acceleration/deceleration PD-41 PLC11 direction and acceleration/deceleration PD-42 PLC12 direction and acceleration/deceleration PD-43 PLC13 direction and acceleration/deceleration PD-44 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and acceleration/deceleration PD-46 PLC15 direction and acceleration/deceleration	PD-34			
PD-35 acceleration/deceleration PD-36 PD-36 PLC7 direction and acceleration/deceleration PD-37 PLC7 direction and acceleration/deceleration PD-38 PLC8 direction and acceleration/deceleration PD-39 PLC9 direction and acceleration/deceleration PD-40 PLC10 direction and acceleration/deceleration PD-41 PLC11 direction and acceleration/deceleration PD-42 PLC12 direction and acceleration/deceleration PD-43 PLC13 direction and acceleration/deceleration PD-44 PD-45 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and acceleration/deceleration PD-46 PLC15 direction and	10 34	acceleration/deceleration		
PD-36 PLC6 direction and acceleration/deceleration PD-37 PLC7 direction and acceleration/deceleration PD-38 PLC8 direction and acceleration/deceleration PD-39 PLC9 direction and acceleration/deceleration PD-40 PLC10 direction and acceleration/deceleration PD-41 PLC11 direction and acceleration/deceleration PD-42 PLC12 direction and acceleration/deceleration PD-43 PLC13 direction and acceleration/deceleration PD-44 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and acceleration/deceleration PD-46 PLC15 direction and acceleration/deceleration	DD-35	PLC5 direction and		
PD-36 acceleration/deceleration PD-37 PLC7 direction and acceleration/deceleration PD-38 PLC8 direction and acceleration/deceleration PD-39 PLC9 direction and acceleration/deceleration PD-40 PLC10 direction and acceleration/deceleration PD-41 PLC11 direction and acceleration/deceleration PD-42 PLC12 direction and acceleration/deceleration PD-43 PLC13 direction and acceleration/deceleration PD-44 PD-45 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and acceleration/deceleration PD-47 PLC15 direction and acceleration/deceleration PD-48 PD-49 PLC15 direction and acceleration/deceleration	FD-33	acceleration/deceleration		
PD-37 PLC7 direction and acceleration/deceleration PD-38 PLC8 direction and acceleration/deceleration PD-39 PLC9 direction and acceleration/deceleration PD-40 PLC10 direction and acceleration/deceleration PD-41 PLC11 direction and acceleration/deceleration PD-42 PLC12 direction and acceleration/deceleration PD-43 PLC13 direction and acceleration/deceleration PD-44 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and acceleration/deceleration PD-46 PLC16 direction and acceleration/deceleration PD-47 PLC17 direction and acceleration/deceleration PD-48 PLC18 direction and acceleration/deceleration PD-49 PLC19 direction and acceleration/deceleration PD-40 PLC19 direction and acceleration/deceleration	DD 26	PLC6 direction and		
PD-37 acceleration/deceleration PD-38 PLC8 direction and acceleration/deceleration PD-39 PLC9 direction and acceleration/deceleration PD-40 PLC10 direction and acceleration/deceleration PD-41 PLC11 direction and acceleration/deceleration PD-42 PLC12 direction and acceleration/deceleration PD-43 PLC13 direction and acceleration/deceleration PD-44 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and PLC15 direction and acceleration/deceleration	PD-30	acceleration/deceleration		
PD-38 PLC8 direction and acceleration/deceleration PD-39 PLC9 direction and acceleration/deceleration PD-40 PLC10 direction and acceleration/deceleration PD-41 PLC11 direction and acceleration/deceleration PD-42 PLC12 direction and acceleration/deceleration PD-43 PLC13 direction and acceleration/deceleration PD-44 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and PLC15 direction and acceleration/deceleration	DD 27	PLC7 direction and		Default: 00
PD-38 acceleration/deceleration PD-39 PLC9 direction and acceleration/deceleration PD-40 PLC10 direction and acceleration/deceleration PD-41 PLC11 direction and acceleration/deceleration PD-42 PLC12 direction and acceleration/deceleration PD-43 PLC13 direction and acceleration/deceleration PD-44 PD-45 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and	PD-3/	acceleration/deceleration		
PD-39 PLC9 direction and acceleration/deceleration PD-40 PLC10 direction and acceleration/deceleration PD-41 PLC11 direction and acceleration/deceleration PD-42 PLC12 direction and acceleration/deceleration PD-43 PLC13 direction and acceleration/deceleration PD-44 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and acceleration/deceleration	DD 20	PLC8 direction and		
PD-39 acceleration/deceleration PD-40 PLC10 direction and acceleration/deceleration PD-41 PD-41 PLC11 direction and acceleration/deceleration PD-42 PLC12 direction and acceleration/deceleration PD-43 PLC13 direction and acceleration/deceleration PD-44 PD-45 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and	PD-37 PD-38 PD-39	acceleration/deceleration	Setting Range: 00 ~ 31	
PD-40 PLC10 direction and acceleration PD-41 PLC11 direction and acceleration/deceleration PD-42 PLC12 direction and acceleration/deceleration PD-43 PLC13 direction and acceleration/deceleration PD-44 PD-45 PLC14 direction and acceleration/deceleration PD-44 PD-45 PLC15 direction and acceleration/deceleration	DD-30	PLC9 direction and		
PD-40 acceleration/deceleration PD-41 PD-41 PD-42 PLC11 direction and acceleration/deceleration PD-42 PD-43 PLC13 direction and acceleration/deceleration PD-44 PD-44 PD-45 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and	PD-39	acceleration/deceleration PLC2 direction and acceleration/deceleration PLC3 direction and acceleration/deceleration PLC4 direction and acceleration/deceleration PLC5 direction and acceleration/deceleration PLC6 direction and acceleration/deceleration PLC7 direction and acceleration/deceleration PLC8 direction and acceleration/deceleration PLC8 direction and acceleration/deceleration PLC9 direction and acceleration/deceleration PLC9 direction and acceleration/deceleration PLC9 direction and acceleration/deceleration PLC10 direction and acceleration/deceleration PLC11 direction and acceleration/deceleration PLC12 direction and acceleration/deceleration PLC13 direction and acceleration/deceleration PLC13 direction and acceleration/deceleration PLC14 direction and acceleration/deceleration PLC15 direction and		
PD-41 PD-41 PLC11 direction and acceleration PD-42 PLC12 direction and acceleration/deceleration PD-43 PLC13 direction and acceleration/deceleration PD-44 PD-45 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and acceleration/deceleration	PD-32 PLC2 direct acceleration/do PD-33 PLC3 direct acceleration/do PD-34 PLC4 direct acceleration/do PD-35 PLC5 direct acceleration/do PD-36 PLC6 direct acceleration/do PD-37 PLC7 direct acceleration/do PD-38 PLC8 direct acceleration/do PD-38 PLC9 direct acceleration/do PD-39 PLC10 direct acceleration/do PLC11 direct acceleration/do PD-41 PLC12 direct acceleration/do PD-42 PLC13 direct acceleration/do PD-43 PLC13 direct acceleration/do PD-44 PLC14 direct acceleration/do PD-44 PLC14 direct acceleration/do PD-44 PLC15 direct acceleration/do PD-44 PLC15 direct acceleration/do PLC14 direct acceleration/do PLC15 direct ac	PLC10 direction and		
PD-41 acceleration/deceleration PD-42 PLC12 direction and acceleration/deceleration PD-43 PLC13 direction and acceleration/deceleration PD-44 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and		acceleration/deceleration		
PD-42 PLC12 direction and acceleration/deceleration PD-43 PLC13 direction and acceleration/deceleration PD-44 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and		PLC11 direction and		
PD-42 acceleration/deceleration PD-43 PLC13 direction and acceleration/deceleration PD-44 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and	PD-41	acceleration/deceleration		
PD-43 PLC13 direction and acceleration PLC14 direction and acceleration/deceleration PD-44 PD-45 PLC15 direction and acceleration		PLC12 direction and		
PD-43 acceleration/deceleration PD-44 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and	PD-42			
PD-43 acceleration/deceleration PD-44 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and		PLC13 direction and		
PD-44 PLC14 direction and acceleration/deceleration PD-45 PLC15 direction and	PD-43			
PD-44 acceleration/deceleration PLC15 direction and		<u> </u>		
DD_/[5]	PD-44			
acceleration/deceleration	DD 45	PLC15 direction and		
	PD-45	acceleration/deceleration		

When the program is running, set the running direction and acceleration/deceleration time of PLC reference 15 .

BIT 0: Operation direction of this section

0: forward 1: reverse

BIT 1: Acceleration and deceleration time of this section

- 0: acceleration and deceleration time 1
- 1: acceleration and deceleration time 2
- 2: acceleration and deceleration time 3
- 3: acceleration and deceleration time 4

BIT 2: Reserved

BIT 3: Reserved

BIT 0: Swing frequency control

This parameter defines whether to use the swing frequency function.

0: Invalid swing frequency control 1: Valid swing frequency control

BIT 1: Swing frequency input method

The swing frequency action's input method when this parameter define swing frequency control.

0: Automatically input

Firstly running according to swing frequency preset frequency PD-47 after started, the time confirmed by the preset duration PD-48, then automatically enter into swing frequency running.

1:Manual input

Firstly running according to swing frequency preset frequency PD-47 after started, enter into swing frequency status when multiple function terminal swing frequency input terminal valid; withdraw the swing frequency status when invalid, running frequency keep at swing frequency preset frequency and running

BIT 2: Swing frequency setting mode

0:Variable swing frequency

1:Fixed swing frequency

This parameter is used to select the base value of the swing amplitude.

- 0: Relative to the central frequency (PO-07 frequency source selection), it is variable swing amplitude system. The swing amplitude varies with the central frequency (set frequency).
- 1: Relative to the maximum frequency (FO-10 maximum output frequency), it is fixed swing amplitude system. The swing amplitude is fixed.

PD-47	Wobble preset frequency	Setting Range: 0.00 ~ maximum	Default: 0.00Hz
-------	-------------------------	-------------------------------	-----------------

Used to define the AC drive's running frequency before enter into swing frequency running.

PD-48 Preset frequency duration	Setting Range: 0.00 ~ 650.00	Default: 0.00s
---------------------------------	------------------------------	----------------

Used to define the swing frequency preset frequency duration before swing frequency running, invalid when swing frequency manually input.

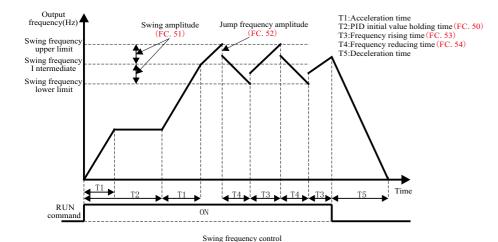
ion parameters description

PE	D-49	Swing frequency amplitude	Setting Range: 0.0% ~ 100.0%	Default: 0.0%	
----	------	---------------------------	------------------------------	---------------	--

This parameter is used to determine the swing amplitude.

Variable swing frequency : AW=central frequency*PD-49

Fixed swing frequency: AW=maximum frequency*P0-10*PD-49


PD-50 Jump frequency amplitude Sett	ng Range: 0.0 ~ 50.0%	Default: 0.0%
-------------------------------------	-----------------------	---------------

This parameter is used to determine the jump frequency amplitude. Defined as a percentage of PD-49.

Jump frequency = Swing amplitude AW x PD-49 (Jump frequency amplitude).

PD-51	Rise time of swing frequency	Setting Range: 0.0 ~ 650.0s	Default: 5.0s
PD-52	Falling time of Swing frequency	Setting Range: 0.0 ~ 650.0s	Default: 5.0s

Used to set up and down time of swing frequency.

5.15 Group PF: User-Defined Function Codes

The user-defined parameter group is the parameter set by the user to the FE Group, it provides a maximum of 63 user-defined parameters. These parameters can be summed up to facilitate the debugging of the customer.

PF-00 PF parameter group function	Setting Range: 00 ~ 11	Default: 00
-----------------------------------	------------------------	-------------

BIT 0:

EC6000

Parameter modification is used to select whether other parameters except PF group parameters are not displayed. It is convenient for users to customize menus and not display unnecessary parameter groups

0:Normal display parameter group

1:Display PF parameter groups only

BIT 1:

This parameter is used for the programming of PF parameter group and the switching of normal function code display. The function code of PF01-PF66 is modified by setting the parameter to "1".

0:PF group function mode

1: PF group programming mode

PF-01	PF macros parameter select	Setting Range: 0 ~ 100	Default:0
-------	----------------------------	------------------------	-----------

This parameter used to define the common industry's parameter group customer made of some customers, can select the required parameter group according to macros parameter catalog, can refer macros parameter group catalog.

This parameter defined the length of customer made function code, to close the function code which needn't indicate or not used.

5.16 Group A0: Torque Control and Restricting Parameters

A0-00 Control mode Setting Range:0~1 Default: 0

It is used to select the AC drive's control mode: speed control or torque control. The EC6000 provides DI terminals with two torque related functions, function 14 (Torque control prohibited) and function 13 (Speed control/Torque control switchover). The two DI terminals need to be used together with AO-OO to implement speed control/torque control switchover.

If the DI terminal allocated with function 13 (Speed control/Torque control switchover) is OFF, the control mode is determined by AO-OO. If the DI terminal allocated with function 13 is ON, the control mode is reverse to the value of AO-OO.

However, if the DI terminal with function 14 (Torque control prohibited) is ON, the AC drive is fixed to run in the speed control mode.

A0-01	Torque setting source in torque control	Setting Range: 0000 ~ 0677	Default: 000
A0-02	Torque digital setting in main frequency source X	Setting Range: -200.0 ~ 200.0%	Default: 100.0%
A0-03	Torque digital setting in auxiliary frequency source Y	Setting Range: -200.0 ~ 200.0%	Default: 100.0%
A0-04	Torque setting in main frequency source X Gain	Setting Range: 0 ~ 5.000	Default: 1.000
A0-05	Torque setting in auxiliary frequency source Y	Setting Range: 0 ~ 5.000	Default: 1.000

Function parameters description

The torque setting is a relative value. 100.0% corresponds to the AC drive's rated torque. The setting range is -200.0% to 200.0%, indicating the AC drive's maximum torque is twice of the AC drive's rated torque. If the torque setting is positive, the AC drive rotates in forward direction. If the torque setting is negative, the AC drive rotates in reverse direction.

BIT 0:Main frequency source X selection(The full range of 1-7 option corresponds to A0-02)

- 0: Function code A0-02 setting
- 1: AI1
- 2: AI2
- 3: AI3
 4: PULSE setting
- 5: Communication setting
- 6: MIN(AI1, AI2)
- 7 MAY (AT1 AT0
- 7: MAX (AI1, AI2)

BIT 1:Auxiliary frequency source Y selection(The full range of 1-7 option corresponds to A0-03)

- 0: Function code A0-03 setting
- 1: AT1
- 2: AI2
- 3: AI3
- 4: PULSE setting
- 5: Communication setting
- 6: MIN(AI1, AI2)
- 7: MAX (AI1, AI2)

BIT 2:Main and frequency source selection

- $0: X \times [A0-04]$
- 1: $Y \times [A0-05]$
- 2: $X \times [A0-04] + Y \times [A0-05]$
- 3: $X \times [A0-04] Y \times [A0-05]$
- 4: MAX $\{X \times [A0-04], Y \times [A0-05]\}$
- 5: MIN $\{X \times \lceil A0 04 \rceil, Y \times \lceil A0 05 \rceil\}$
- 6: Any non-zero value of the main frequency source X and auxiliary frequency source Y is valid, and the main frequency source X takes precedence.

BIT 3:reserved

A0-06	Torque given filter time	Setting Range: 0.00 ~ 10.00	Default:0.11

The filter time of torque give value which selected by A0-001 hundred digit, more bigger value more slow system responding.

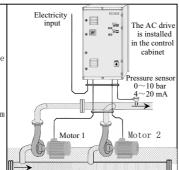
A0-10	Forward maximum frequency in torque control	Setting Range: 0.0Hz ~ Maximum frequency	Default: 50.00Hz
A0-11	Reverse maximum frequency in torque control	Setting Range: 0.0Hz ~ Maximum frequency	Default: 50.00Hz

Two parameters are used to set the maximum frequency in forward or reverse rotation in torque control mode.

In torque control, if the load torque is smaller than the motor output torque, the motor's rotational speed will rise continuously. To avoid runaway of the mechanical system, the motor maximum rotating speed must be limited in torque control.

You can implement continuous change of the maximum frequency in torque control dynamically by controlling the frequency upper limit.

A0-12	Acceleration time in torque control	Setting Range: 0.0 ~ 100.00s	Default: 0.00s
A0-13	Deceleration time in torque control	Setting Range: 0.0 ~ 100.00s	Default:0.00s


In torque control, the difference between the motor output torque and the load torque determines the speed change rate of the motor and load. The motor rotational speed may change quickly and this will result in noise or too large mechanical stress. The setting of acceleration/deceleration time in torque control makes the motor rotational speed change softly. However, in applications requiring rapid torque response, set the acceleration/deceleration time in torque control to 0.00s.

For example, two AC drives are connected to drive the same load. To balance the load allocation, set one AC drive as master in speed control and the other as slave in torque control. The slave receives the master's output torque as the torque command and must follow the master rapidly. In this case, the acceleration/deceleration time of the slave in torque control is set to 0.0s.

Multiple pumps control key points: multiple pumps logic together with PID (need select as positive action) can realize max four set pumps (or motor) control. Each one set pump connect to AC drive (frequency transform running) or power grind (industry frequency running), decided by the Y/T terminal of AC drive. Motor link lock function used to discriminate whether this pump connected into multiple pump control system. Will make the on/off touch point signal which one by one corresponding pump, or heat overload relay touch point (also used to other protection elements) connected into X terminal, the AC drive can know whether the corresponding pump connect into system, further more decide whether jump up this pump and running. Automatically shift function used to adjust the on/off running prior level of each pump in system, to make ensure loading of each pump balance, prevent one set pump rusted because long time not used. After the AC drive stop machine and restart again or power on after power off again, the start sequence of each pump recover to be initial status. Add pump logic divided into two types: a) assist pump directly into industry frequency (mode 1~2); b) the AC drive always control the latest input Pump of system, the assist pump input industry frequency (mode 3⁴) after AC drive soft start.

●The contactor of the same pump under the frequency transform and industry frequency must link lock; All contactor of all pumps under the AC drive mode. To guarantee safety and reliable running, please select and use the AC contactor with mechanical link lock device.

- Must process phase sequence confirmation before first time power on, to guarantee the motor running direction under frequency transform and industry frequency mode are unanimous.
- ●The AC drive enter into dormant status when only has one set speed adjust pump and meet the dormant condition.

Function parameters description

5.17 Group A1: Constant Pressure Water Supply Parameter Group

A1-00	Multiple pump control	Setting Range: 0010 ~ 0144	Default: 0110
-------	-----------------------	----------------------------	---------------

BIT 0:

- 0: Multiple pump control Invalid
- 1: Frequency transform pump fix, no timing shift
- 2: Frequency transform pump fix with timing shift
- 3: Frequency transform pump circulating, no timing shift
- 4: Frequency transform pump circulating, has timing shift

Multiple pumps control mode	Speed governing pump	Automatic circulating	Wiring method
1	Fix	Not support	Un nicture in next nego
2	ГІХ	Support	Up picture in next page
3	Not Fix	Not support	Down nicture in part page
4	NOU FIX	Support	Down picture in next page

BIT 1:Quantity of pump

Used to set the total quantity of pumps (Motors) in the multiple pump control system.

BIT 2:

 $0\!:\!\text{Used}$ to set the total quantity of pumps (Motors) in the multiple pump control system.

1:Start first then stop first, stop the finally started pump when need reduce pump (suitable to equal pump power)

BIT 3:Reserved

Related parameters		Setting value and meaning
C1.04 (T1 terminal function)	40	1#Pump control
C1.05 (T2 terminal function)	41	2#Pump control

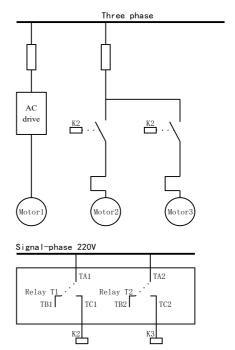


Figure 6-32 AC drive fixed connection diagram (E6.00=1 or 2)

Related parameters		Setting value and meaning
C1.04 (Tlterminal function)	40	1#Pump control
C1.05 (T2terminal function)	41	2#Pump control
C1.06 (T3terminal function)	42	3#Pump control

Function parameters description

	Three phase	1	_
AC drive]
K1K1K1K1K1K1K1	1	K3 K3 K3 K3	\ \
Relay T1	TA1 Relay T2	TA2 Relay T3 (Expand) TC2 TB3	TA3

Figure 6-32 AC drive fixed connection diagram (E6.00=3 or 4)

A	41-01	Add pump given increment 1	Setting Range: 0.0% ~ 100.0%	Default: 0.0%
A	41-02	Add pump given increment 2	Setting Range: 0.0% ~ 100.0%	Default: 0.0%
A	41-03	Add pump given increment 3	Setting Range: 0.0% ~ 100.0%	Default: 0.0%

Add pump given increment 1, 2 and 3 valid when has one, two and three assist pumps running respectively.

Add pump given increment is one increment which defined at percentage type, used to overlap on the given value of original PID. Suppose the PID given value is 0.4Mpa, A1-01=20%, then when the first assist pump running, the PID give value will adjusted to be 0.4* (1+20%)=0.48Mpa.

Example: the AC drive controlled 3 set paralleling water pump supply water for pipeline. E5.05(PID given number set) set constant pressure give, control the pipeline grid pressure. Only has speed adjust pump running when smaller used water; the assist pumps one by one start after used water increased. Along with the water flow increasing, the upper end of pipeline (measure points) and end pressure difference also increasing. To make up the increased pressure difference, compensate the fallen pressure value at pipeline end, need gradually increase the PID give value through set reasonable give increment.

When the first assist pump running, the give increment is A1-01.

When the two assist pumps running, the give increment is the sum of A1-01 and A1-02. When three assist pumps running, the give increment is the sum of A1-01, A1-02 and A1-03.

A1-04	Motor connect in judge function	Setting Range: 0 ~ 2	Default: 2
-------	---------------------------------	----------------------	------------

BIT 0: Valid pump judge invalid

0:Invalid

1:By S terminal invalid

2:Decided by A01-05 setting

A1-05	Motor connect in setting	Setting Range: 0~1	Default: 1111
-------	--------------------------	--------------------	---------------

0:This motor and system broken

1:This motor connect in system

After the link lock function invalid, the pump(motor) corresponding signal(link lock mode decide the signal source) valid, the AC drive regard this pump(motor) input system and ready; otherwise, regard this pump(motor) not connect in multiple pumps control system. If speed governing pump(the pump or motor which directly driven by AC drive) corresponding signal loss or invalid, then AC drive regard it be at unavailable status, and remind multiple pump control link lock alarm(Er/AL52), at the same time, action according to F0.23(failure protection select 5) thousand digit set method.

The link lock electric circuit wiring method has the below two types:

1) Make the corresponding one on/off touch point signal of pump (motor) connect into link lock electric lock electric circuit. The AC drive multiple pumps control logic able to judge whether this pump (motor) be at power off status, then make decision whether start next one set usable pump (motor).

2) Make one heat overload relay touch point(or other motor protection circuit elements) which corresponding to pump(motor) into link lock circuit. The AC drive multiple pumps control logic able to judge whether this pump(motor) be at power off status, then make decision whether stop use.

A1-06

A1-07

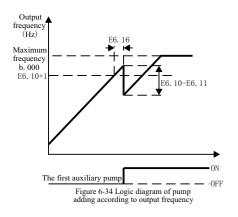
A1-08

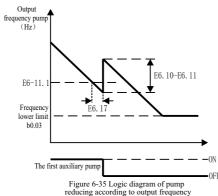
of rest motors

FC6000

Fix time shift time	Setting Range: 0.1 ~ 6000.0	Default: 0.1h
Fix time shift frequency limit	Setting Range: 0.0 ~ Maximum frequency	Default: 50.0Hz
Fix time shift the quantity	Setting Range: 1 ~ 3	Default: 1

Under the unit=2 or 4 mode, when the multiple pump system running time reach up to A1-06, if now put into system buts the motor quantity which still not start above or egual to A1-08, and AC drive output frequency less than A1-07 then trigger fix time shift.


The fix time shift function used to balance the working time of each pump (motor) in the system.


A1-09	Add pump frequency 1	Setting Range: 0.0 ~ Maximum frequency	Default: 48.0Hz
A1-10	Reduce pump frequency 1	Setting Range: 0.0 ~ Pumping frequency	Default: 25.00Hz

The add and reduce pump frequency of the first assist pump (Controlled by the Y/T terminal which configure function is "37:2# pump control").

The add pump condition of first assist pump:1) no assist pump running; 2) the AC drive output frequency bigger than 'A1-09+1Hz', and duration exceed A1-15. after the first assist pump started, the output frequency of AC drive reduce 'A1-09- A1-10' to weaken sudden change of output quantity.

The reduce pump condition of first assist pump: 1) only one assist pump running; 2) the AC drive output frequency less than 'Al-10-1Hz', and duration exceed Al-16. After the first assist pump stopped, the output frequency of AC drive rise 'A1-09-A1-10' to weaken sudden change of output quantity.

Setting Range: Add pump frequency 2 A1-11 Default: 48.0Hz 0.0 ~ Maximum frequency Setting Range: Reduce pump frequency 2 Default: 25.00Hz 0.0 ~ Pumping frequency 1

The add and reduce pump frequency of the second assist pump (Controlled by the Y/T terminal which configure function is "38:3# pump control").

The add pump condition of second assist pump:1) has one assist pump running; 2) the AC drive output frequency bigger than 'Al-11+1Hz', and duration exceed Al-15. after the second assist pump started, the output frequency of AC drive reduce 'Al-11- Al-12' to weaken sudden change of output quantity.

The reduce pump condition of second assist pump:1) has two assist pumps running; 2) the AC drive output frequency less than 'A1-12-1Hz', and duration exceed A1-16. After the second assist pump stopped, the output frequency of AC drive rise 'Al-11- Al-12' to weaken sudden change of output quantity.

A1-13	Add pump frequency 3	Setting Range: 0.0 ~ Maximum frequency	Default: 48.0Hz
A1-14	Reduce pump frequency 3	Setting Range: 0.0 ~ Pumping frequency 1	Default: 25.00Hz

The add and reduce pump frequency of the third assist pump (Controlled by the Y/T terminal which configure function is "39:3# pump control").

The add pump condition of third assist pump:1) has two assist pump running; 2) the AC drive output frequency bigger than 'A1-13+1Hz', and duration exceed A1-15. after the first assist pump started, the output frequency of AC drive reduce 'A1-13- A1-14' to weaken sudden change of output quantity.

The reduce pump condition of first assist pump: 1) has three assist pump running; 2) the AC drive output frequency less than 'Al-14-1Hz', and duration exceed Al-16. after the third assist pump stopped, the output frequency of AC drive rise 'A1-13-A1-14' to weaken sudden change of output quantity.

A1-15	Add pump delay time	Setting Range: 0 ~ 360.0s	Default: 5.0s
A1-16	Reduce pump delay time	Setting Range: 0 ~ 360.0s	Default: 3.0s

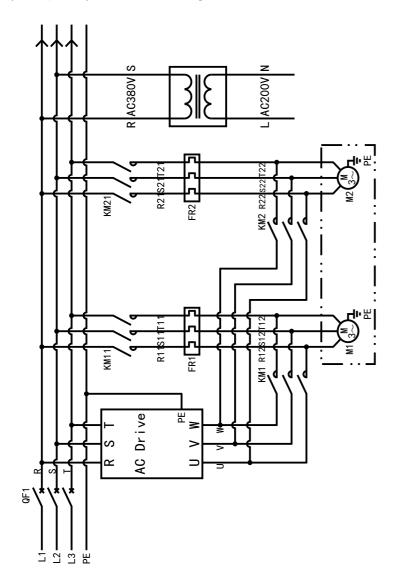
Assist pump start and stop delay. The detail application please refer Al-09 ~ Al-14 parameter instruction.

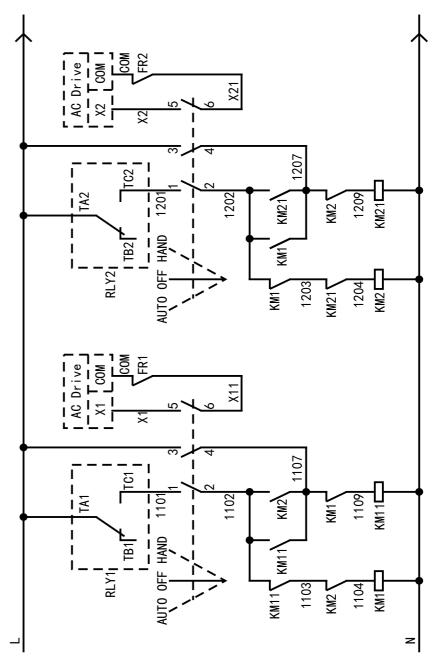
A1-17	Industry AC drive link lock time	Setting Range: 0.02 ~ 10.00	Default: 0.20s
-------	-------------------------------------	-----------------------------	----------------

Used in the Y terminal of input and shift pump (motor) status change delay

A1-18	Industry AC drive	Setting Range:	Default: 50.00Hz
A1-10	shift frequency	0.00 ~ Maximum frequency	Default. 50.00HZ

The shift frequency point of pump (motor) from frequency transform control to industry frequency control.


A1-19	Fix pump failure handle method	Setting Range: 0 ~ 2	Default: 0
-------	-----------------------------------	----------------------	------------


BIT 0:

O:emergency stop, report failure, all assist pump stop working

1:emergency stop, report failure, assist pump maintain current situation

2:only alarm, the system continue running

5.18 Group U: Monitoring Parameters

Press PRG key for a long time in the initial interface to enter data monitoring UO group, and press < > key to switch the following display contents.

01 cap, (and probb (/ no)	to switch the following display contones.	
U-00	Set frequency	Set the theoretical operating frequency of the AC drive and the absolute value of the set frequency. The actual output frequency of	
U-01	Output frequency	the AC drive is shown in U-09.	
U-02	Output current	Display the AC drive output current value during operation.	
U-03	Output voltage	Display the AC drive output voltage value during operation.	
U-04	Input voltage	Display the AC drive input voltage value during operation.	
U-05	Mechanical speed	See description of P7-05 for display value.	
U-06	Bus voltage	Display the AC drive bus voltage value during operation.	
U-07	Output power	Display the AC drive output power value during operation.	
U-08	Target torque	Display the current torque upper limit setting value.	
U-09	Output torque	Display the AC drive output torque value during operation.	
U-10	PID setting		
U-11	PID feedback	Display PID setting value and feedback value.	
U-12	AI1 input value	Display the percentage value corresponding to the analog input	
U-13	AI2 input value	port, display 0 \sim 100% in percentage.	
U-14	HDI input value	Display HDI high-speed pulse sampling frequency, the smallest unit is $0.01\mbox{KHz}$	
U-15	Counter count value	Pulse count value input through DI terminal	
U-16	AI3 input value	Display the percentage value corresponding to the analog input port, display 0~100% in percentage. The state of the input terminals, the sequence is: BIT9 BIT8 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 DI0 DI9 DI8 DI7 DI6 DI5 DI4 DI3 DI2 DI1 When the input terminal is ON, the corresponding terminal is 1, and OFF is 0, and the state of all Dis is converted to hexadecimal number display	
U-17	Terminal S Status		
U-18	Terminal Y Status		
U-19	A01 output value	Display the percentage value corresponding to the analog output port.	
U-20	A02 output value		
U-21	HDO output value	Display HDO high-speed pulse output frequency, the minimum unit is 0.01Hz	
U-22	Reserved		
U-23	Model temperature	Display the temperature value of the radiator of the AC drive module	
U-24	Output excitation	Display the excitation component value of the motor during operation as a percentage of the rated current of the motor.	
U-25	Power factor	Display the current running motor power factor.	
U-26	Power-on time		
U-27	power-on operation time		
U-28	Accumulated time		
U-29	AC drive running state	Record the basic operation data of this power-on and operation	
U-30	Maximum current		
U-31	Maximum voltage		

U-32	Maximum temperature	Record the basic operation data of this power-on and operation	
U-33	Miniamum voltage		
U-34	Rated power of AC drive		
U-35	Rated voltage of AC drive		
U-36	Rated current of AC drive	Display the rated value of the AC drive factory configuration	
U-37	AC version		
U-38	MC version		
U-39	Communication frequency	Display the data written by communication address 0x2001	
U-40	Main frequency X display	Display the main frequency source X frequency setting	
U-41	Auxiliary frequency Y display	Display the auxiliary frequency source Y frequency setting	
U-42	Remaining time	Display the remaining running time when running. See the parameter for timing operation introduction $\ensuremath{P8-29}$	
U-43	Target voltage upon V/F separation	Display the target output voltage and the current actual output	
U-44	Output voltage upon V/F separation	voltage when running in the VF separation state. For VF separation, see related introduction of group P3.	
U-45	PG feedback value	Display the motor operation frequency actually measured by the encoder.	
U-46	Linear speed	Display the linear velocity of DI-S8 high-speed pulse sampling. The unit is meters/minute. According to the actual number of sampled pulses per minute and F8-07(the number of pulse per meter), the linear velocity value is calculated.	
U-47	PM rotor position	Display the rotor position of the synchronous machine. Range: 0.0° $\sim\!359.9^\circ$	
U-48	Resolver position	Display the current position signal of resolver.	
U-49	ABZ position	Display the current AB-phase pulse count of ABZ or UVW encoder.	
U-50	Phase Z counting	Display the current Z-phase pulse count of ABZ or UVW encoder, when the encoder rotates forward or reversely, the corresponding value is increased by 1 or minus 1, and you can check whether the encoder is installed normally by checking the value. Range:0~65535	
U-51	Communication sending value	Display the communication data when the point-to-point communication is valid. U0-63 is the communication value sent by host, and U0-64	
U-52	Communication receiving value	is the data value received by the slave. Range:-100.00% \sim 100.00%	
U-53	Motor temperature	Display the motor temperature value sampled by the expansion card AI4. Motor temperature detection see F9-56.	
U-54	Multiple pumps control	Pump operation status during multi-pump control.	

6: Regular inspection and maintenance

6.1 Daily inspection

During power-up and operation, without taking away the cover, check the operation of AC drive with eye survey from outside and confirm that there's nothing abnormal. Usually, check the followings:

- whether the operation performance accord with the regulation
- ■whether the environment accord with the regulation
- ■whether keyboard panel display is normal
- ■whether without abnormal noises, vibrations and abnormal odor
- ■whether without abnormality such as overheat or change in color

6.2 Periodic Inspection

Before doing the periodic inspection, first stop operation, shut off power supply and take away the cover.

Even when the power supply of the AC drive is shut off, there's still charged voltage on the filter capacitors and it takes some time to discharge. In order to avoid the danger, be sure to wait until the charge indicator goes out and test with a voltmeter to ensure the voltage is lower than safe value ($\leq 25 \text{Vdc}$) before the operation of inspection.

Notice!

1. For AC drives ≤ 22 kW, wait 5 minutes after shutting down the power, and wait 10 minutes for those ≥ 30 kW. Not until the DC voltage between terminals N- and P+ is lower than DC25V could examination operation with cover removed begin.

2. No one other than the appointed operators could perform maintenance and part replacement and other operations. (Metal objects such as watches and rings should be taken off before operation, and use tools with insulation in operation.)

- 3. Rebuilding the AC drive is absolutely forbidden.
- 4. Avoid electric shock and facility accident.

List of Periodic Inspection

Inspection cycle	Inspection parts	Inspection item	Inspection method
Daily	Environment	Confirm environment temperature, humidity, vibration and whether there's dust, gas, oil mist and water drops and so on.	With eye survey and apparatus measuring
Daily		Are there any foreign bodies like tools or dangerous goods nearby?	With eye survey
Daily	Voltage	Are voltages of main circuit and control circuit both normal?	Measure with a multi- meter
Daily Daily	Keyboard Display Panel	Is the display clear? Is any character missing?	With eye survey
Half a year	1 7	Is there any abnormal sound or vibration?	With eye survey and hearing
Half a year		Are the bolts (fasteners) loose?	Fasten
Half a year	Mechanism Parts	Is there any distortion and damage?	With eye survey
Half a year	rarts	Is there color change due to overheat?	With eye survey
Half a year		Is any character missing?	With eye survey
Daily		Have any bolts been loose and dropped off?	Fasten
Half a year	Main Circuit	Is there distortion, crack, to over- heat and aging in the machine and insulation? damage or color change due	With eye survey
Half a year		Is it stained with dust or deface- ment?	With eye survey
Half a year		Is there color change and distortion due to overheat in the conductor?	With eye survey and hearing
Half a year		Is there any damage and color change in the wire protection?	With eye survey
Daily	Main Circuit:	Is there any damage?	With eye survey
Half a year	Terminals and Wiring	Is there any looseness between the bolts and the connector?	Fasten
Half a year		Is there any odors and color change?	Smell and hearing
Half a year		Is there color change, damaged and distortion due to corrosion?	With eye survey
Half a year		Is there leakage and distortion of the capacitor?	With eye survey
Daily	Main Circuit:	Is there leakage, color change, crack and shell inflation?	With eye survey
Daily	Terminal Block	Has the safety valve loose? Is there significant inflation in the valve?	With eye survey
Daily		Measure static capacity according to the need	Measure with a multi- meter
Daily	Main Circuit:	Is there abnormal odor or crackle in the insulator due to overheat?	With eye survey
Daily	Filter Capacitor	Is there any broken wire?	With eye survey, or open the connection at one end and measure with a multimeter

Daily	Main Circuit: Resistor	Is there abnormal noise of vibration or odor?	With hearing, eye survey and smelling
Daily	Main Circuit: Transformer	Is there noise of vibration while operating?	With eye survey
Daily	and Reactor	Are the junctions well connected?	With eye survey
Half a year	Main Circuit:	Is there abnormal noise or vibration?	With hearing, eye survey and turn with hand (must cut off the power)
Half a year	Connector	Are the bolts loose?	Fasten
Half a year		Is there color change due to over- heat?	With eye survey
Half a year Cooling System: Cooling Fans		Is there any blockings or foreign bodies on the radiator and the air inlet and outlet?	With hearing

Note!

Please wipe the polluted areas with chemically neutral cleaning cloth. Sweep the dust with electric cleaner.

7. Faults and Solutions

7.1List of actions to protect

The AC drive itself has the functions of over-voltage, low voltage and over-current alarms and protection. Once a failure occurs, the protective actions will work, the AC drive will stop the output, the abnormal contact will act, and the free operation of motor will stop. Please refer to the abnormality causes and solutions according to the shown abnormality information of AC drive. The abnormality records will be kept in the interior storage unit of AC drive (which can record the latest 4 faults message), and can be read on the digital operation panel or by communication via parameter reading.

Display	Fault name	Possible causes	Solutions
Err01	Inverter unit protection	1: The output circuit is grounded or short circuited. 2: The power cable between the motor and the AC drive is too long. 3: The power module is overheated. 4: The internal connections become loose. 5:The main control board is faulty. 6: The drive board is faulty. 7: The inverter module is faulty.	1: Eliminate external faults. 2: Install a reactor or an output filter. 3: Check the air filter and the cooling fan. 4: Connect all cables properly. 5: Seek technical support. 6: Seek technical support. 7: Seek technical support.
Err02	1: The output circuit is grounded or short circuited. 2: Motor auto-tuning is not performed. 3: The acceleration time is too short. Overcurrent during curve is not appropriate. acceleration 5: The input voltage is too low. 6: The startup operation is performed on the rotating motor. 7: A sudden load is added during acceleration.	1: Eliminate external faults. 2: Perform the motor auto-tuning. 3: Increase the acceleration time. 4: Adjust the manual torque boost or V/F curve. 5: Adjust the voltage to the normal range. 6: Select rotational speed tracking restart or start the motor after it stops. 7: Remove the added load. 8: Select an AC drive of higher power class.	
Err03	during	1: The output circuit is grounded or short circuited. 2: Motor auto-tuning is not performed. 3: The deceleration time is too short. 4: The input voltage is too low. 5: A sudden load is added during deceleration. 6: The braking unit and braking resistor are not installed.	1: Eliminate external faults. 2: Perform the motor autotuning. 3: Increase the deceleration time. 4: Adjust the voltage to the normal range. 5: Remove the added load. 6: Install the braking unit and braking resistor.

Faults and solutions

Err04	Overcurrent at constant speed	1: The output circuit is grounded or short circuited. 2: Motor auto-tuning is not performed. 3: The input voltage is too low. 4: A sudden load is added during operation. 5: The AC drive model is of too small power class.	1: Eliminate external faults. 2: Perform the motor autotuning. 3: Adjust the voltage to the normal range. 4: Remove the added load. 5: Select an AC drive of higher power class.
Err05	Overvoltage during acceleration	1: The input voltage is too high. 2: An external force drives the motor during acceleration. 3: The acceleration time is too short. 4: The braking unit and braking resistor are not installed.	1: Adjust the voltage to normal range. 2: Remove the external force or install a braking resistor. 3: Increase the acceleration time. 4: Install the braking unit and braking resistor.
Err06	Overvoltage during deceleration	1: The input voltage is too high. 2: An external force drives the motor during deceleration. 3: The deceleration time is too short. 4: The braking unit and braking resistor are not installed.	1: Adjust the voltage to normal range. 2: Remove the external force or install a braking resistor. 3: Increase the deceleration time. 4: Install the braking unit and braking resistor.
Err07		1: The input voltage is too high. 2: An external force drives the motor during running.	1: Adjust the voltage to the normal range. 2: Remove the external force or install the braking resistor.
Err08	Control power supply fault	1: The input voltage is not within the allowable range.	1: Adjust the input voltage to the allowable range.
Err09	Under- voltage	1: Instantaneous power failure occurs on the input power supply. 2: The AC drive's input voltage is not within the allowable range. 3: The DC-Bus voltage is abnormal. 4: The rectifier bridge and buffer resistor are faulty. 5: The drive board is faulty. 6: The main control board is faulty.	1: Reset the fault. 2: Adjust the voltage to the normal range. 3: Contact technical support. 4: Contact technical support. 5: Contact technical support. 6: Contact technical support.
Err10	AC drive overload	1: The load is too heavy or locked rotor occurs on the motor. 2: The AC drive model is of too small power class.	1: Reduce the load and check the motor and mechanical condition. 2: Select an AC drive of higher power class.
Err11	Motor overload	1: P9-23 is set improperly. 2: The load is too heavy or locked rotor occurs on the motor. 3: The AC drive model is of too small power class.	1: Set it correctly. 2: Reduce the load and check the motor and the mechanical condition. 3: Select an AC drive of higher power class.
Err12	Power input phase loss	1: The three-phase power input is abnormal. 2: The drive board is faulty.	1: Eliminate external faults. 2: Seek technical support. 3: Seek technical support.

	Power input	3: The lightening board is	3: Seek technical support.
Err12	phase loss	4: The main control board is faulty.	4: Seek technical support.
Err13	Power output phase loss	1: The cable connecting the AC drive and the motor is faulty. 2: The AC drive's three-phase outputs are unbalanced when the motor is running. 3: The drive board is faulty. 4: The module is faulty.	1: Eliminate external faults. 2: Check whether the motor three-phase winding is normal. 3: Seek technical support. 4: Seek technical support.
Err14	Module overheat	1: The ambient temperature is too high. 2: The air filter is blocked. 3: The fan is damaged. 4: The thermally sensitive resistor of the module is damaged. 5: The inverter module is damaged.	1: Lower the ambient temperature. 2: Clean the air filter. 3: Replace the damaged fan. 4: Replace the damaged thermally sensitive resistor. 5: Replace the inverter module.
Err15	External equipment fault	1: External fault signal is input via S.	1:Reset the operation.
Err16	Communi- cation fault	1: The host computer is in abnormal state. 2: The communication cable is faulty. 3: The communication parameters in group PB are set improperly.	1: Check the cabling of host computer. 2: Check the communication cabling. 3: Set the communication parameters properly.
Err17	Contactor faul	1: The drive board and power supply are faulty. 2: The contactor is faulty.	1: Replace the faulty drive board or power supply board. 2: Replace the faulty contactor.
Err18	Current detection fault	1: The HALL device is faulty. 2: The drive board is faulty.	1: Replace the faulty HALL device. 2: Replace the faulty drive board.
Err19	Motor auto-tuning fault	1: The motor parameters are not set according to the nameplate. 2: The motor auto-tuning times out.	1: Set the motor parameters according to the nameplate properly. 2: Check the cable connecting the AC drive and the motor.
Err20	Encoder fault	1: The encoder type is incorrect. 2: The cable connection of the encoder is incorrect. 3: The encoder is damaged. 4: The PG card is faulty.	1: Set the encoder type correctly based on the actual situation. 2: Eliminate external faults. 3: Replace the damaged encoder. 4: Replace the faulty PG card.
Err21	EEPROM readwrite fault	1: The EEPROM chip is damaged.	1: Replace the main control panel.
Err22	AC drive hardware fault	1: Overvoltage exists. 2: Overcurrent exists.	1: Handle based on over-voltage. 2: Handle based on over-current.
Err23	Short circuit to ground	1: The motor is short circuited to the ground.	1: Replace the cable or motor.
Err24	EEPORM Initializa- tion fault	1: Abnormal user data.	1: Reinitialize data and set parameters.

Faults and solutions

п от	Running	1: Accumulative running time	1: Clear the record through the
Err26		reaches setting.	parameter initialization function.
Err27	User-defined fault 1	1: The user-defined fault 1	1: Reset the operation.
Err28	User-defined fault 2	signal is input via DI.	1. Reset the operation.
Err29	Power-on time reached	1: Accumulative power-on time reaches the setting.	1: Clear the record through the parameter initialization function.
Err30	Load becoming 0	1: The AC drive running current is lower than P9-38.	1: Check the load is disconnected or P9-38 and P9-39 is correct.
Err31	PID feedback lost during running	1: The PID feedback is lower than the setting of PA-27.	1: Check the PID feedback signal or set PA-27 to a proper value.
Err40	Pulse-by- pulse current limit fault	1: The load is too heavy or lockedrotor occurs on the motor. 2: The AC drive model is of too small power class.	1: Reduce the load and check the motor and mechanical condition. 2: Select the AC drive of higher power class.
Err42	Too large speed deviation	1: The encoder parameters are set incorrectly. 2: The motor auto-tuning is not performed. 3: P9-42 and P9-43 are set incorrectly.	1: Set the encoder parameters properly. 2: Perform the motor autotuning. 3: Set F9-69 and F9-70 correctly based on the actual situation.
Err43	Motor over-speed	1: The encoder parameters are set incorrectly. 2: The motor auto-tuning is not performed. 3: P9-40 and P9-41 are set incorrectly	1: Set the encoder parameters properly. 2: Perform the motor auto-tuning. 3: Set P9-40 and P9-41 correctly based on the actual situation.
Err45	Motor overheat	1: The cabling of the temperature sensor becomes loose. 2: The motor temperature is too high.	1: Check the temperature sensor cabling and eliminate the cabling fault. 2: Lower the carrier frequency or adopt other heat radiation measures.
Err51	Pole position detection failed	1: The deviation between the motor parameters and the actual value istoo large.	1: Reconfirm whether the motor parameters are correct, and focus on whether the rated current is set too small.

7.2 Reset Alarm

- ■When a failure is detected from EC6000, the failure will be shown on the digital manipulator, and the abnormal contact will have output and the motor will slide to stop. Check the failure causes in the list below and take corrective measures.
- If the mentioned inspection and corrective measures can't solve the problem, please directly contact with our company.
- ■For restart, connect with the resetting input signal or press (so), or disconnect the power supply of the main loop for one time, to reset the failure status.
- \blacksquare If you want to change the parameters in the failure indication, please press (\Re) .

Note!

When inputting the right/opposite operation order, the AC drive fails to receive the failure resetting signal. You must cut off the right/opposite operation order first, and then reset.

7.3 The Causes and Solutions for AC drive's faults

Malfunction or fault can be caused by reasons such as ways of operation, setting conditions, environment or the AC drive itself. If these causes are not eliminated or no measures are taken, the drive will end up and unable to operate normally.

(1) Measures against electromagnet noises and induction noises

If there's noise source near the AC drive, the noise may invade the AC drive through radiation or power line and cause faulty actions of control circuit, and even destroy AC drive. Naturally, one solution is to improve noise capability of AC drive, but that's not economic, let alone the limited range of improvement. So it's best to take measures outside it to avoid the interference.

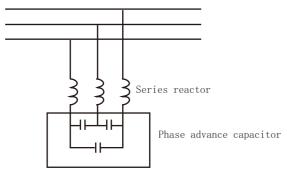
- 1. Install surge killer on relay or contactor in order to restrain switching surge noises at on and off switching.
- 2. Try to shorten the wiring of control circuit or program control circuit, and separate it from main circuit wiring.
- 3. For circuits regulated to use shielded wire for wiring, wiring must comply with the wiring regulations. And if the wiring is too long, an isolation amplifier should be added.
- 4. The grounding terminal of AC drive should be grounded according to regulations, and the grounding should be separate and not shared with electric welding machine or power devices.
- $5.\,\mathrm{Add}$ a noise filter on the input terminal of the AC drive to avoid noise invasion from the power line.
 - (2) Environment setup measures

AC drive is a device made up of electronic parts, and its admissible environment is described in the specifications in detail. If the regulations cannot be followed, corresponding measures or solutions must be taken.

1. Avoid vibrations, and use vibration-proof pads when necessary.

Make sure that the vibration is under regulation. Because of the effect of vibration on electronic parts equals to mechanical stress, it should not be taken for long or repeatedly, which may cause faults in the AC drive.

- 2. Avoid corrosive gases and dusty environment, both of which will cause electronic parts rust and bad contact, and what's more, insulation will be decreased due to moisture absorption and cause short circuit accidents. Regular measure is treating with paint and dust-proof, and in strict conditions, inner-pressure suited for clean air or self-protective whole sealing structures are adopted.
- 3. The temperature of the around environment should be appropriate, the life-span and reliability of electronic parts is affected by both too high and too low temperature. Take semiconductor module for example, once the regulated limit is exceeded, damage will be instant. Therefore, except equipping with cooler and sun-shade to keep the temperature in the regulated range, cleaning and spot check on air filter in the AC drive rack and the angles of cooling fan are also necessary. Besides, the internal microprocessor may stop working under extremely low temperature, space heaters must be equipped in low temperature areas.
- 4. No damp, and never should dewing occur. When AC drive needs to be left unused for a long time, be careful that dewing may occur as soon as air-conditioning is stopped. It would be best that the cooling device of the electric room has dehumidification function.


(3) Prevent AC drive from interfering other machines

It is common that an AC drive interferes other machines at the same site, and this should be avoided through taking measures or solutions beforehand.

High-order harmonics on the power supply side

When the AC drive is running, there will be high-order harmonics flowing to the power supply and adversely affecting the system. The countermeasures are as follows:

- 1. Separate the power supply system and set up a dedicated transformer to connect the power to the AC drive.
- 2. Insert a reactor or filter on the input side of the AC drive to reduce high-order harmonic components as shown in the figure:
- 3. If there is a phase-in capacitor, a reactor should be connected in series to prevent too much high-harmonic current from flowing in and causing overheating to burn the capacitor.

4. Add a reactor or magnetic ring to the output side of the AC drive.

The temperature of the motor rises

When the motor is used for variable speed operation, if the motor is a synchronous ventilation type induction motor, it will have a cooling effect at low speeds. Poor, so overheating may occur. In addition, the waveform output by the AC drive contains high-order harmonics, so copper loss and iron loss are increased.

Check the data for the load status and operating range for reference, and add the following countermeasures when necessary:

- 1. The motor is changed to an independent power supply ventilation type or the first-level capacity specification is improved.
 - 2. The motor matching is changed to a special motor for AC drive.
 - 3. Limit the operating range and avoid low-speed belt operation.

8. Appendix

EC6000

8.1 Appendix I: Functional code table

PO Star	PO Standard Parameter group				
Function Code	Parameter Name	Setting Range	Default	Address	
P0-00	AC drive rated G/P type selection	O: heavy load rating (G) constant torque application 1: light load rating (P) decreasing torque application	0	0000Н	
P0-01	Motor control mode	0: V/F control (direction LED is on) 1: Sensorless flux vector control(SVC) (direction LED slow blinking) 2: Closed-loop vector control(FVC) (direction LED fast blinking)	0	0001Н	
P0-02	Command source selection	0: Operation panel control (LOC LED on) 1: Terminal control (REM LED on) 2: RS485 Communication control (REM LED blinking) 3: Option card (REM LOC LED on) 4: Terminal switchover (REM LOC LED blinking)	0	0002Н	
P0-03	Main frequency source X selection	0: Operation panel digital setting frequency 1: AI1 2: AI2 3: AI3 4:Terminal pulse HS setting 5: RS485 communication setting 6: UP/DW setting 7: PID control setting 8: PLC mode operation setting 9: reserved A: reserved B: Option card C: Terminal switchover	0	0003Н	
P0-04	Main source X Gain	0.000~5.000	1. 000	0004Н	
P0-05	Auxiliary frequency source Y selection	Same as PO-03	0	0005Н	
P0-06	Auxiliary source Y Gain	0.000~5.000	1. 000	0006Н	
P0-07	Main and Auxiliary frequency source combination mode	0: Main frequency source X is valid 1: Auxiliary frequency source Y is valid 2: X+Y 3: X-Y 4: MAX (X , Y) 5: MIN (X , Y) 6: X*Y 7: Any non-zero value of the main frequency source X and auxiliary frequency source Y is valid, and the primary channel takes precedence.	0	0007Н	
P0-08	Digital setting of main source X frequency	0.00~Maximum output frequency	50.00Hz	0008Н	

P0-09	Digital setting of auxiliary source Y frequency	0.00 \sim Maximum output frequency	50.00Hz	0009Н
P0-10	Maximum output frequency	0.00∼320.00Hz	50.00Hz	000AH
P0-11	Source of frequency upper limit selection	0: Set by P0-12 1: AI1 2: AI2 3: AI3 4: Terminal pulse setting 5: RS485 Communication setting	0	000ВН
P0-12	Source of frequency upper limit digital setting	0~100.0%	100.0%	000СН
P0-13	Source of frequency lower limit digital setting	0~100.0%	0.0%	000DH
P0-14	Frequency lower limit run mode	0: Run at frequency lower limit 1: Stop 2: Run at zero speed	1	000ЕН
P0-15	Acceleration time 1	0.1∼6500.0s	Model dependent	000FH
P0-16	Deceleration time 1	0.1∼6500.0s	Model dependent	0010H
P0-17	Acceleration/ Deceleration time unit	1: 0.1s 2: 0.01s	1	0011H
P0-18	Stopping method	0: Ramp to stop 1: Coast to stop	0	0012H
P0-19	Rotation direction selection	BITO: 0: Forward direction operation 1: Reverse direction operation BIT1: 0: Reverse operation enable 1: Reverse operation disable	00	0013Н
P0-20	Carrier frequency	1.0∼15.0KHz	Model dependent	0014H
P0-21	Frequency reference resolution	1: 0. 1Hz 2: 0. 01Hz	2	0015H
P0-22	Reserved	-	-	0016H
P0-23	Parameter initialization	0: No operation 1: Data locked 2: Reset Error message 3~6: Undefined 7: Initialization setting—User data reset 10: Back up current user parameters 210: Restore user backup parameters	0~210	0017Н

P1 Motor parameters				
Function Code	Parameter Name	Setting Range	Default	Address
P1-00	Motro Auto-tuning selection	0: No auto-tuning 1: Asynchronous motor stationary auto-tuning 2: Asynchronous motor (rotational) complete auto-tuning 3: Reserved	0	0100Н
P1-01	Motor type	0: Common asynchronous motor 1: Variable frequency asynchronous motor	0	0101H
P1-02	Motor rated power	0. 1kW∼1000. 0kW	Model dependent	0102Н
P1-03	Motor rated voltage	1V~2000V	Model dependent	0103Н
P1-04	Motor rated current	P1-11~655.35A (AC Drive<=55kW) P1-11~6553.5A (AC Drive>55kW)	Model dependent	0104Н
P1-05	Motor rated frequency	0.01Hz~maximum frequency	Model dependent	0105Н
P1-06	Motor rated rotational speed	1rpm~65535rpm	Model dependent	0106Н
P1-07	Stator resistance (asynchronous motor)	0.001Ω ~ 65.535Ω (AC Drive<=55kW)	Model dependent	0107Н
P1-08	Rotor resistance (asynchronous motor)	0.0001 $\Omega \sim$ 6.5535 Ω (AC Drive>55kW)	Model dependent	0108H
P1-09	Leakage inductive reactance (asynchronous motor)	0.01mH ~ 655.35mH (AC Drive<=55kW)	Model dependent	0109Н
P1-10	Mutual inductive reactance (asynchronous motor)	0.001mH ∼ 65.535mH (AC Drive>55kW)	Model dependent	010АН
P1-11	No-load current (asynchronous motor)	0.01A ~ P1-04 (AC Drive<=55kW) 0.1A ~ P1-04 (AC Drive>55kW)	Model dependent	010BH
P1-12 ~ P1-16	Reserved	-	-	010CH ~ 0110H
P1-23	Encoder type	BITO: Encoder type 0: ABZ incremental encoder 1: UVW incremental encoder 2: Resolver 3: SIN/COS encoder 4: Wire-saving UVW encoder	000	0117Н

P1-23	Encoder type	BIT1: A/B phase sequence of ABZ incremental encoder 0: Forward 1: Reverse BIT2: U, V, W phase sequence of UVW encoder 0: Forward 1: Reverse BIT3:UVW encoder 0: Forward 1: Reverse	000	0117Н
P1-24	Encoder pulses per revolution	0~60000	1024	0118H
P1-25	Encoder installation angle	0. 0∼359. 9°	0.0°	0119Н
P1-26	UVW encoder angle offset	0. 0∼359. 9°	0.0°	011AH
P1-27	Number of pole pairs of resolvert	1~100	1	011BH
P1-28	Encoder wire-break fault detection time	0.00~60.00s	2.00s	011СН
P2 Vec	tor Control	Parameters		
Function Code	Parameter Name	Setting Range	Default	Address
P2-00	Vector control mode	BITO: SFVC optimization mode selection 1: optimization mode 1 2: Optimization mode 2 BIT1: Reserved BIT2: Reserved BIT3: Reserved	0001	0200Н
P2-01	Speed loop proportional gain 1	1~100	30	0201Н
P2-02	Speed loop	0. 01∼10. 00s	0.50s	0202Н
	integral time 1			
P2-03	Switchover frequency 1	0.00∼P2−06	5. 00Hz	0203Н
P2-03 P2-04	Switchover		5. 00Hz 20	
	Switchover frequency 1 Speed loop proportional	0.00~P2-06 1~100		0203Н
P2-04	Switchover frequency 1 Speed loop proportional gain 2 Speed loop	0.00~P2-06 1~100	20	0203H 0204H
P2-04 P2-05	Switchover frequency 1 Speed loop proportional gain 2 Speed loop integral time 2 Switchover	0.00~P2-06 1~100 0.01~10.00s	20 1. 00s	0203H 0204H 0205H

P2-09	Vector control over-excitation gain	0~200	64	0209Н
P2-10	Torque upper limit source in speed control mode	0: P2-11 function code setting 1: AI1 2: AI2 3: AI3 4: Pulse setting 5: Communication setting 6: MIN(AI1,AI2) 7: MAX(AI1,AI2)	0	020АН
P2-11	Digital setting of torque upper limit	0.0~200.0%	150. 0%	020ВН
P2-12	Reserved	_	-	020CH
P2-13	Reserved	_	-	020DH
P2-14	Current loop of M-axis Kp		2000	020ЕН
P2-15	Current loop of M-axis Ki	0~60000	1300	020FH
P2-16	Current loop of T-axis Kp	0 0000	2000	0210Н
P2-17	Current loop of T-axis Ki		1300	0211Н
P2-18	Speed loop integral property	0: Invalid 1: Valid	0	0212Н
P2-19	Over excitation mode selection	0: Disable 1: Reduce process enable 2: Constant speed and deceleration	1	0213Н
P2-20	Over modulation enable selection	0~1	0	0214Н
P2-21	Maximum output voltage cofficient	100~110%	105%	0215Н
P2-22	Field weakening automatic adjustment gain	50~200%	100%	0216Н
P2-23	Negative torque limit enable	0~1	0	0217Н

Function code table

Function Code	Parameter Name	Setting Range	Default	Address
P3-00	V/F curve selection	0: Linear V/F 1: Set PO-03 ~ P3-06 parameter to obtain any V/F relationship curve 2: Square V/F 3: 1.2-power V/F 4: 1.4-power V/F 6: 1.6-power V/F 8: 1.8-power V/F 9: Reserved 10: V/F complete separation 11: V/F half separation	0	0300Н
P3-01	Multi-point V/F frequencyl (F1)	0. 00∼P3-03	1.00Hz	0302Н
P3-02	Multi-point V/F voltage1 (V1)	0. 0∼P3−04	3.0%	0301Н
P3-03	Multi-point V/F frequency2 (F2)	P3-01~P3-05	25. 00Hz	0304Н
P3-04	Multi-point V/F voltage2 (V2)	P3-02~P3-06	50. 0%	0303Н
P3-05	Multi-point V/F frequency3 (F3)	P3-03~maximum frequency	50.00Hz	0306Н
P3-06	Multi-point V/F voltage3 (V3)	P3-04~100%	100%	0305Н
P3-07	V/F Torque boost	0.0~30.0%	1.0%	0307Н
P3-08	Cut-off frequency of torque boost	0.00∼maximum frequency	50.00Hz	0308Н
P3-09	Online torque compensation gain	80~150	100	0309Н
P3-10	V/F slip compensation	0~200.0%	0.0%	030AH
P3-11	Slip compensation time constant	0. 1∼10. 0s	0.5s	030BH
P3-12	Over excitation gain	0~2.00	0.64	030CH
P3-13	V/F oscillation suppression gain	0~1000	Model dependent	030DH
P3-14	Oscillation suppression mode selection	0~4	3	030DH
P3-15	Voltage source for V/F separation selection	0: Digital setting (P3-15) 1: AI1	0	030ЕН

P3-16 Voltage digital setting for V/F separation time of V/F separation time of V/F separation time of V/F separation time of V/F separation of time of V/F separation time of V/F separation time of V/F separation of time of V/F separation time of V/F separation of time of V/F separation time of V/F separation of the voltage independent reduction to 0. 1:After the voltage independent of 0. 1:After the voltage independent of 0. 1:After the voltage independent of 0. 1:After the voltage independent reduction to 0. 1:After the voltage in					
P3-17	P3-16	setting for	$0V{\sim}\mathrm{rated}$ motor voltage	OV	030FH
P3-18 deceleration time of V/F separation time of V/F separation 10.0s	P3-17	acceleration time of V/F	0. 1∼1000. 0s	10.0s	0310Н
P3-19 V/F separation shutdown mode 1:After the voltage is reduced to 0, the frequency is reduced to 0 again. 150% 0312H	P3-18	deceleration time of V/F	0. 1∼1000. 0s	10.0s	0311Н
P3-21 Overcurrent stall suppression gain O-100 20 O312H	P3-19		to 0. 1:After the voltage is reduced to 0, the		0312Н
P3-21 suppression enable 0:Invalid 1:Valid 1 0312H P3-22 Overcurrent stall suppression gain Stall current compensation factor 50~200% 50% 0312H P3-23 Overvoltage stall enable 0:Invalid 1:Valid 1 0312H P3-25 Overvoltage stall enable 0:Invalid 1:Valid 1 0312H P3-26 Overvoltage stall frequency gain 0~100 30 0312H P3-27 Overvoltage stall voltage gain 0~100 30 0312H P3-28 Stall maximum frequency 0~50Hz 5Hz 0312H P3-30 Minimum electric torque current 0~64A 32A 0312H P3-31 Minimum generation torque current 10~100% 20% 0312H P3-32 Automatic up scaling KP 0~100 30 0312H P3-33 Automatic up scaling KP 0~100 30 0312H P3-34 Automatic up scaling KP 0~100 30 0312H P3-35 Automatic up scaling KP 0~100 30 0312H P3-36 Overvoltage stall enable 0~100 0 0 P3-37 Automatic up scaling KP 0~100 0 0 P3-38 Automatic up scaling KP 0~100 0 0 P3-39 Automatic up scaling KP 0~100 0 0 P3-30 Automatic up scaling KP 0~100 0 0 P3-30 Automatic up 0~100 0 0 P3-31 Overvoltage stall enable 0~100 0 0 P3-32 Automatic up 0~100 0 0 P3-33 Automatic up 0~100 0 P3-34 Automatic up 0~100 0 P3-35 Automatic up 0~100 0 P3-36 Automatic up 0~100 0 P3-37 Overvoltage stall enable 0~100 0 P3-38 Automatic up 0~100 0 P3-39 Overvoltage stall enable 0~100 0 P3-30 Overvoltage stall enable 0~100 0 P3-31 Overvoltage stall enable 0~100 0 P3-31 Overvoltage stall enable 0~100 0 P3-31 Overvoltage stall enable 0~100 0 P3-32 Overvoltage stall enable 0~100 0 P3-31 Overvoltage stall enable 0~100 0 P3-32 Overvoltage stall enable 0~100 0 P3-35 Overvoltage stall enable 0~100 0 P3-36 Overvoltage stall enable 0~100 0 P3-37 Overvoltage stall enable 0~100 0 P3-38	P3-20		50~200%	150%	0312Н
P3-22 suppression gain O~100 20 0312H P3-23 Stall current compensation factor 50~200% 50% 0312H P3-24 Overvoltage stall action voltage 220.0V~2000.0V 220V:380V 380V 760V 1140V:1900V dependent 0312H P3-25 Overvoltage stall enable 0:Invalid 1:Valid 1 0312H P3-26 Overvoltage stall frequency gain 0~100 30 0312H P3-27 Overvoltage stall voltage gain 0~100 30 0312H P3-28 Overvoltage stall voltage gain 0~100 30 0312H P3-29 Automatic upscaling enable 0~1 0 0312H P3-30 Minimum generation torque current 0A~64A 32A 0312H P3-31 Minimum generation torque current 10~100% 20% 0312H P3-32 Automatic upscaling KP 0~100 30 0312H P3-33 Automatic upscaling KP 0~100 30 0312H P3-34 Automatic upscaling KP 0~100 30 0312H P3-35 Automatic upscaling KP 0~100 30 0312H P3-36 O~100 0~100 0~100 0~100 0~100 0~100 P3-37 Automatic upscaling KP 0~100 0~	P3-21	suppression	0:Invalid 1:Valid	1	0312Н
P3-23	P3-22		0~100	20	0312Н
P3-24 Stall action voltage Stall action voltage Stall action voltage Stall action voltage Stall enable O:Invalid 1:Valid 1 0312H P3-25 Overvoltage Stall enable O-100 30 0312H P3-26 Overvoltage Stall frequency gain O-100 30 0312H P3-27 Overvoltage Stall voltage gain O-100 30 0312H P3-28 Stall maximum Stall maximum Stall maximum O-50Hz Stall maximum Stall maximum Stall maximum Stall maximum O-100 Stall O-100 O-100 O-100 O-100 O-100 P3-30 Minimum electric torque current OA-64A O-100 O-100	P3-23	compensation	50~200%	50%	0312Н
P3-25 stall enable 0:Invalid 1:Valid 1 0312H P3-26 Overvoltage stall frequency gain 0~100 30 0312H P3-27 Overvoltage stall voltage gain 0~100 30 0312H P3-28 Stall maximum frequency 5Hz 0312H P3-29 Automatic upscaling enable 0~1 0 0312H P3-30 Minimum electric torque current 0A~64A 32A 0312H P3-31 Minimum generation torque current 10~100% 20% 0312H P3-32 Automatic upscaling KP 0~100 30 0312H	P3-24	stall action	220V:380V 690V:1250V 380V:760V 1140V:1900V		0312Н
P3-26 frequency gain 0~100 30 0312H P3-27 Overvoltage stall voltage gain 0~100 30 0312H P3-28 Stall maximum frequency 0~50Hz 5Hz 0312H P3-29 Automatic upscaling enable 0~1 0 0312H P3-30 Minimum electric torque current 0A~64A 32A 0312H P3-31 Minimum generation torque current 10~100% 20% 0312H P3-32 Automatic upscaling KP 0~100 30 0312H P3-33 Automatic upscaling KP 0~100 30 0312H P3-34 Automatic upscaling KP 0~100 30 0312H P3-35 Automatic upscaling KP 0~100 30 0312H P3-36 Automatic upscaling KP 0~100 30 0312H P3-37 Overvoltage stall voltage gain voltage gain 0~100 0~100 0~100 0~100 P3-26 Frequency gain 0~100 0~100 0~100 P3-27 Overvoltage stall voltage gain voltage gain 0~100 0~100 P3-28 Stall maximum frequency 0~100 0~100 P3-29 Automatic upscaling KP 0~100 0~100 P3-30 Overvoltage stall voltage gain 0~100 P3-30 Overvo	P3-25		0:Invalid 1:Valid	1	0312Н
P3-27 voltage gain 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P3-26	_	0~100	30	0312H
P3-28 stall maximum frequency 0~50Hz 5Hz 0312H P3-29 Automatic upscaling enable scaling enable torque current 0~1 0 0312H P3-30 Minimum electric torque current torque current 0A~64A 32A 0312H P3-31 Minimum generation torque current 10~100% 20% 0312H P3-32 Automatic upscaling KP 0~100 30 0312H	P3-27		0~100	30	0312Н
P3-29 scaling enable 0~1 0 0312H P3-30 Minimum electric torque current 0A~64A 32A 0312H P3-31 Minimum generation torque current 10~100% 20% 0312H P3-32 Automatic upscaling KP 0~100 30 0312H	P3-28	stall maximum	0~50Hz	5Hz	0312Н
P3-30 torque current 0A~64A 32A 0312H P3-31 Minimum generation torque current 10~100% 20% 0312H P3-32 Automatic upscaling KP 0~100 30 0312H P3-32 Automatic up- 0~100 30 0312H	P3-29		0~1	0	0312Н
P3-31 generation torque current 10~100% 20% 0312H P3-32 Automatic up-scaling KP 0~100 30 0312H	P3-30		0A~64A	32A	0312Н
P3-32 scaling KP 0~100 30 0312H	P3-31	generation	10~100%	20%	0312Н
D9_99	P3-32	_	0~100	30	0312Н
	P3-33		0~100	30	0312Н

Function Code	Parameter Name	Setting Range	Default	Address
P4-00	S1 terminal function	0: No function 1: Forward RUN (FWD) 2: Reverse RUN (REV) 3: Three-Wire control 4: Forward JOG (FJOG) 5: Reverse JOG (RJOG) 6: Coast to stop 7: Emergency stop 8: Fault reset (RESET) 9: External fault input	1	0400Н
P4-01	S2 terminal function	10: Terminal UP 11: Terminal YWN 12: UP and YWN setting clear 13: Speed control/Torque control switchover 14: Speed search start enable 15: Reserved 16: Multi-reference terminal 1 17: Multi-reference terminal 2	2	0401H
P4-02	S3 terminal function	18: Multi-reference terminal 3 19: Multi-reference terminal 4 20: Terminal 1 for acceleration/deceleration time selection 21: Terminal 2 for acceleration/deceleration time selection 22: Acceleration/Deceleration prohibited	4	0402Н
P4-03	S4 terminal function	23: PID control cancel 24: PID control pause 25: PID integral pause 26: PID characteristic switching 27: PID parameter switchover 28: PID target value switchover terminall 29: PID target value switchover terminal2	5	0403Н
P4-04	S5 terminal function	30: PID target value switchover terminal3 31: PID feedback value switchover terminal1 32: PID feedback value switchover terminal2 33: PID feedback value switchover terminal3 34: PLC pause 35: PLC status reset 36: Swing enable 37: Swing pause	6	0404Н
P4-05	S6 terminal function	38: Swing reset 39: Frequency source switchover terminal1 40: Frequency source switchover terminal2 41: Frequency source switchover terminal3 42: Frequency source switchover terminal4	8	0405Н
P4-06	S7 terminal function	43: Command source switchover terminal 1 44: Command source switchover terminal 2 45: Counter input terminal 46: Counter reset terminal 47: Counter clock input terminal 48: Counter reset	10	0406Н
P4-07	S8 terminal function	49: DC braking command 50: Terminal pre-excitation 51: User-defined fault1 52: User-defined fault2 53: Pump 1 invalid 54: Pump 2 invalid 55: Pump 3 invalid 56: Pump 4 invalid	11	0407Н

		DITTO C1		
P4-08	Characteristic selection of terminal S1-S4	BITO: S1 terminal 0: Effective closing BIT1: S2 terminal 0: Effective closing BIT2: S3 terminal 0: Effective closing BITE: S4 terminal 0: Effective closing BITE: S4 terminal 0: Effective closing 1: Effective opening	0000	0408Н
P4-09	Filter time of terminal S1-S4	0.000~60.00s	0. 10s	0409Н
P4-10	Characteristic selection of terminal S5-S8	BITO: S5 terminal 0: Effective closing BIT1: S6 terminal 0: Effective closing BIT2: S7 terminal 0: Effective closing BIT3: S8 terminal 0: Effective closing 1: Effective opening BIT3: S8 terminal 0: Effective closing 1: Effective opening	0000	040АН
P4-11	Filter time of terminal S5-S8	0.000~60.00s	0.1s	040BH
P4-12	Terminal command mode	0: Two-line mode 1 Terminal set as 1 is forward running, terminal set as 2 is reverse running 1: Two-line mode 2 Terminal set as 1 is start running, terminal set as 2 is switch forward and reverse running 2: Three-line mode 1 Terminal set as 1 is forward running, terminal set as 2 is reverse running, terminal set as 3 is stop running 3: Three-line mode 2 Terminal set to 1 is start running, terminal set as 2 is switch forwardand reverse, terminal set as 3 is Stop running	0	040СН
P4-13	Terminal action mode selection	BITO: Terminal of coast to stop recovery mode 0: Restore the original instruction after invalidation 1: Do not restore the original instruction after invalidation BIT1: Terminal of emergency stop recovery mode 0: Restore the original instruction after invalidation 1: Do not restore the original instruction after invalidation BIT2: Select the terminal operation mode after fault reset 0: The terminal operation command is valid immediately 1: The terminal operation command is valid only after it is canceled	111	040DH

P4-14	Reserved	_	-	040EH
P4-15	Reserved	-	-	040FH
P4-16	Terminal protection function selection	BITO: 0: Invalid terminal operation command when power on 1: Valid terminal operation command when power on BIT1: When the run command setting channel terminal switching, selection of run command is valid 0: The running command is valid after stopping during switching 1: The run command is valid immediately when switching	00	0410H
P4-17	UP/DW frequency value	0.0~1.000	0. 01	0411H
P4-18	UP /DW frequency adjustment selection	0: Retentive at power failure 1: Non-retentive at power failure 2: Valid operation, stop and reset	0	0412H
P4-19	Speed of UP/DW frequency increase and decrease	0. 1∼100. 0%/s	2.0%/s	0413H
P4-20	Y1 terminal function	0: No output 1: Forward running 2: Reverse running 3: Fault output1 (no output at auto-reset period)	1	0414H
P4-21	Y2 terminal function	4: Fault output2 (output at auto-reset period) 5: Ready for RUN 6: Frequency reached	2	0415H
P4-22	Y3 terminal function	7: Frequency-level detection FDT1 output 8: Frequency-level detection FDT2 output 9: Frequency upper limit reached 10: Frequency lower limit reached 11: Current 1 reached	3	0416H
P4-23	Y4 terminal function	12: Current 2 reached 13: Zero current output 14: Output current out of limit 15: Torque limited 16: OL1 motor overload pre-warning 17: OL2 AC drive overload pre-warning	6	0417Н
P4-24	Y5 terminal function- Extension	18: Zero-speed running (no output at stop) 19: Acceleration running 20: Deceleration running 21: Dc breaking 22: PLC step completed 23: PLC cycle completed	0	0418Н
P4-25	Y6 terminal function- Extension	24: Reserved 25: Accumulative running time reached 26: Timing reached 27: Maximum count value reached 28: Set count value reached 29: All input out of limit	0	0419Н

P4-26	Y7 terminal function- Extension	30: Module temperature Reached 31: Fan running 32: Data output 1 from transfer(Y function) 33: Data output 2 from transfer(Y function)	0	041AH
P4-27	Y8 terminal function- Extension	34: Data output 3 from transfer(Y function) 35: Data output 4 from transfer(Y function) 36: Pump 1 start-up 37: Pump 2 start-up 38: Pump 3 start-up 39: Pump 4 start-up	0	041BH
P5 Ana	log terminal	parameters		
Function Code	Parameter Name	Setting Range	Default	Address
P5-00	AI123 input signal selection	BITO: AI2 signal selection 0: 0~10V 1: 0~20.00mA BIT1: AI3 signal selection 0: 0~10V 1: 0~20.00mA BIT2: AI3 signal selection 0: 0~10V 1: 0~20.00mA BIT3: Reserved	0010	0500Н
P5-01	AI1 input voltage minimum value	0.00~10.00V	0. 00V	0501H
P5-02	AII input voltage lower limit corresponding setting	0.00~100.00%	0.00%	0502Н
P5-03	AI1 input voltage maximum value	0.00~10.00V	10. 00V	0503Н
P5-04	AI1 input voltage upper limit corresponding setting	0.00~100.00%	100.00%	0504Н
P5-05	AI1 filter time	0.00~10.00s	0. 10s	0505Н
P5-06	AI2 input voltage minimum value	0.00~10.00V	0. 00V	0506Н
P5-07	AI2 input voltage lower limit corresponding setting	0.00~100.00%	0.00%	0507Н
P5-08	AI2 input voltage maximum value	0.00~10.00V	10. 00V	0508H
P5-09	AI2 input voltage upper limit corresponding setting	0.00~100.00%	100.00%	0509Н
P5-10	AI2 filter time	0.00~10.00s	0. 10s	050AH
P5-11	AI3 input voltage minimum value	0.00~10.00V	0. 00V	050ВН

P5-12	AI3 input voltage lower limit corresponding	0.00~100.00%	0. 00%	050СН
P5-13	AI3 input voltage maximum value	0.00~10.00V	10.00V	050DH
P5-14	AI3 input voltage upper limit corresponding setting	0.00~100.00%	100.00%	050ЕН
P5-15	AI3 filter time	0.00~10.00s	0. 10s	050FH
P5-16	HS minimum input frequency	0.00∼50.00KHz	0.00KHz	0510Н
P5-17	Corresponding setting of HS minimum input frequency	0.00~100.00%	0. 00%	0511Н
P5-18	HS maximum input frequency	0.00∼50.00KHz	50.00KHz	0512Н
P5-19	Corresponding setting of HS maximum input frequency	0.00~100.00%	100.00%	0513Н
P5-20	HS filter time	0.00~10.00s	0. 10s	0514H
P5-21				0515H
~ P5-28	Reserved	_	_	∼ 051CH
P5-29	A01 output selection	0: Set frequency 1: Output frequency 2: Output current 3: Output voltage 4: Mechanical speed 5: Set torque 6: Output torque 7: PID setting	0	051DH
P5-30	A02 output selection	8: PID feedback 9: Output power 10: Bus voltage 11: Input voltage 12: AI1 input value 13: AI2 input value 14: AI3 input value 15: PUL input value	1	051ЕН
P5-31	HY output selection	16: Module temperature 17: Internal temperature 18: Excitation quantity 19: RS485 communication settings	2	051FH
P5-32	Analog output signal selection	BITO: A01 signal selection 0: 0~10V 1: 4.00~20.00mA 2: 0.00~20.00mA BIT1: A02 signal selection 0: 0-10V 1: 4.00-20.00mA 2: 0.00-20.00mA BIT2: HY function enable 0: Ordinary switching value Y4 function 1: HY high speed pulse output function BIT3: Reserved	000	0520Н

		Tanoci		
P5-33	A01 output gain	25.0~200.0%	100.0%	0521H
P5-34	A01 output offset coefficient	-10.0~10.0%	0.0%	0522Н
P5-35	A02 output gain	25. 0~200. 0%	100.0%	0523Н
P5-36	A02 output offset coefficient	-10.0~10.0%	0.0%	0524Н
P5-37	HY pulse output lower limit	0.00∼50.00KHz	0. 20KHz	0525Н
P5-38	HY pulse output upper limit	0.00∼50.00KHz	50.00KHz	0526Н
P6 Star	t/Stop Control	parameters		
Function Code	Parameter Name	Setting Range	Default	Address
P6-00	Start mode	BITO: Start mode 0: Direct start 1: First braking and then start by startup frequency 2: Rotational speed tracking RESTART	0	0600Н
P6-01	Minimum output frequency	0.00~P6-04	0. 50Hz	0601H
P6-02	Startup pre-excited current	0~100%	30%	0602Н
P6-03	Startup pre-excited time	0.00~60.00s	Model dependent	0603Н
P6-04	Startup frequency	0.00~60.00Hz	0.50Hz	0604H
P6-05	Startup frequency holding time	0.00~50.00s	0.0s	0605Н
P6-06	Startup DC braking current	0~150%	0%	0606Н
P6-07	Startup DC braking time	0.0~300.0s	0.0s	0607Н
P6-08	Initial frequency of stop DC braking	0.00∼50.00Hz	0. 00Hz	0608H
P6-09	Stop DC braking current	0~150%	0%	0609Н
P6-10	Waiting time of stop DC braking	0.00~60.00s	0.0s	060AH
P6-11	Stop DC braking holding time	0.00~600.0s	0.0s	060BH
P6-12	Zero speed holding current	0~150%	0%	060CH
P6-13	Acceleration mode selection	BITO: Acceleration/Deceleration time frequency base 0: Base:50.00Hz 1:Maximum frequency BIT1: S-curve selection 0: Straight line 1: Curve	00	060DH

P6-14	Start of S-curve acceleration time		0. 50	060EH
P6-15	End of S-curve acceleration time	$0.01{\sim}20.00$ s	0. 50	060FH
P6-16	Start of S-curve deceleration time	0.01. 220.008	0.50	0610H
P6-17	End of S-curve deceleration time		0.50	0611H
P6-18	Rotational speed tracking mode	0: From frequency at stop 1: From zero speed 2: From maximum frequency	0	0612H
P6-19	Waiting time of rotational speed tracking	0.0∼600.0s	1.0s	0613Н
P6-20	Tracking speed of rotational speed	0~100	20	0614H
P6-21	Torque tracking closed loop current KP	0~1000	50	0615H
P6-22	Torque tracking closed loop current KI	0~1000	50	0616Н
P6-23	Torque tracking current	30%~200%	100%	0617Н
P6-24	Torque tracking current lower limit	10~100%	30%	0618H
P6-25	Torque tracking rise time	0.5∼30s	1. 1	0619Н
P6-26	Torque tracking demagnetization time	0.00~5.00s	1.00s	061AH
P7 Syst	tem configurat	tion parameters		
Function Code	Parameter Name	Setting Range	Default	Address
P7-00	Parameter and key lock selection	BITO: 0: Not locked 1: Function parameter locking 2: Function parameters and key locking (except RUN/STOP/JOG) 3: Function parameters and keys are fully locked	0	0700Н
P7-01	User password	0~65535	0	0701H
P7-02	STOP key function	BITO: 0: Invalid for terminal command 1: Valid for terminal command BIT1: 0: Invalid for communication command 1: Valid for communication command BIT2: 0: Invalid for expansion card command 1: Valid for expansion card command	000	0702Н

P7-03	MF.K Key function selection	BITO: Panel digital potentiometer setting selection 0: Invalid 1: Main frequency 2: Auxiliary frequency 3: Upper frequency 4: V/F separated voltage 6: PID feedback 7: Torque setting BIT1: 0: Directly valid after the knob is modified 1: Press the Enter key to be valid after the knob is modified	01	0703Н
P7-04	Copy of function parameters	0: No operation 1: Proofread data, parameter copy 2: Write keyboard data to AC drive	0	0704Н
P7-05	Display speed factor	0. 001~50. 000	1. 000	0705Н
P7-06	First line run display	BITO: The first group displays BIT1: The second group displays BIT2: The third group displays	6321	0706Н
P7-07	First line stop display	BIT3: The fourth group displays 0: Given frequency 1: Output frequency 2: Output current 3: Output voltage	Ca40	0707Н
P7-08	Second line run display	4: Input voltage 5: Mechanical speed 6: Bus voltage 7: Output power 8: Given torque 9: Output torque	0792	0708Н
P7-09	Second line stop display	A: AI1 input value B: AI2 input value C: HS input value D: Power factor E: PID setting F: Counter value	OCA4	0709Н
P7-10	Multi-function expansion card selection	0~8	0	070АН
P7-11	operation panel display item selection	BITO: LCD operation panel display language Set LCD operation panel display language, only valid when using LCD operation panel. 0: Chinese 1: English BIT1: Output frequency display selection 0: Target frequency displays the target frequency of the current control motor. 1: Synchronous frequency displays the output frequency after converting operation. BIT2: Reserved BIT3: LCD contrast adjustment 0-f: The larger the contrast value	8001	070ВН
P7-12	Accumulated power-on days	0~65535	Read-only	070СН
P7-13	Accumulated power-on hours	0.0~6553.5	Read-only	070DH
P7-14	Accumulated running days	0~65535	Read-only	070ЕН
P7-15	Accumulated running hours	0.0~6553.5	Read-only	070FH

P7-16	Accumulative power consumption (10000 kWh)	$0{\sim}65535$ million kWh	Read-only	0710Н
P7-17	Accumulative power consumption	0∼65535kWh	Read-only	0711H
P7-18	AC drive status before power off	BITO: 0: Stop 1: Run BIT1: 0: Forward RUN 1: Reverse RUN BIT2: Reserved BIT3: Reserved	0000	0712Н
P8 Aux	iliary Funct	ions		
Function Code	Parameter Name	Setting Range	Default	Address
P8-00	Forward JOG running frequency(FJOG)	0.00Hz to maximum frequency	5.00Hz	0800Н
P8-01	Reverse JOG running frequency(RJOG)	0.00Hz to maximum frequency	5.00Hz	0801Н
P8-02	JOG acceleration time		10.0s	0802Н
P8-03	JOG deceleration time		10. 0s	0803Н
P8-04	Acceleration time 2		10.0s	0804H
P8-05	Deceleration time 2		10.0s	0805Н
P8-06	Acceleration time 3	0.1∼6500.0s	10.0s	0806Н
P8-07	Deceleration time 3		10.0s	0807Н
P8-08	Acceleration time 4		10. 0s	0808H
P8-09	Deceleration time 4		10. 0s	0809Н
P8-10	Emergency stop deceleration time		10. 0s	080AH
P8-11	Forward/Reverse rotation dead- zone time	0. 0∼150. 00s	0.00s	080ВН
P8-12	Jump frequency 1		0.00Hz	080CH
P8-13	Jump frequency 2		0.00Hz	080DH
P8-14	Jump frequency amplitude	0.00Ug to maximum fraquancy	0. 00Hz	080DH
P8-15	Frequency detection value (FDT1)	0.00Hz to maximum frequency	30. 00Hz	080FH
P8-16	Detection range of FDT1		0. 00Hz	0810Н

P8-17	Frequency detection value (FDT2)		50.00Hz	0811H
P8-18	Detection range of FDT2	0.00Hz to maximum frequency	0.00Hz	0812Н
P8-19	Detection range of frequency consistent		3. 00Hz	0813Н
P8-20	current reaching 1 detection value	0~200.0%	100.0%	0814H
P8-21	current reaching 1 detection range	0~100.0%	5. 0%	0815H
P8-22	current reaching 2 detection value	0~200.0%	150. 0%	0816Н
P8-23	Current reaching 2 detection range	0∼100.0%	5. 0%	0817Н
P8-24	Zero current detection level	0~200.0%	5. 0%	0818H
P8-25	Zero current detection delay time	0. 0%~650. 0%	0. 20s	0819Н
P8-26	Output overcurrent threshold	0.0%~200.0%	100%	081AH
P8-27	Output overcurrent detection delay	0.0%~650.0%	0. 20s	081BH
P8-28	Timing operation function	BITO: Timing function selection 0: Invalid 1: Valid BIT1: Timing operation time selection 0: P8-29 setting 1: AI1 2: AI2 3: AI3 Analog input range 100% corresponds to P8-28 BIT2: Reserved BIT3: Reserved	00	081СН
P8-29	Timing duration setting	0.0∼6500.0Min	0.0Min	081DH
P8-30	Timer time unit	0: Second 1: Minute 2: Hour	0	081EH
P8-31	Timer set value	0~65000	0	081FH
P8-32	Counter Max	0~65000	1000	0820Н
P8-33	Counter set value	0~65000	500	0821H
P8-34	AI1 voltage protection value lower limit	0. 0∼P8-35	3. 10V	0822Н
P8-35	AI1 voltage protection value upper limit	P8-34~10.00V	6. 80V	0823Н
P8-36	Module temperature reached	0~100℃	75. 0℃	0824Н

Function code table

Function Code	Parameter Name	Setting Range	Default	Address
P9-00	Protection function selection 1	BITO: Motor overload protection selection 0: Invalid	1111	0900Н
P9-01	Protection function selection 2	BITO: Output load loss protection selection O: Invalid 1: Ramp to stop BIT1: Instantaneous power failure action selection O: Invalid 1: Valid BIT2: Continue operation frequency selection in case of failure O: Operate at current operation frequency 1: Operate at set frequency 2: Operate at the upper limit frequency 3: Operate at the lower limit frequency 4: Operation at abnormal standby frequency BIT3:Reserved	000	0901Н
P9-02	Fault auto reset times	O: OFF Automatic reset function is turned off, only manual reset is allowed. 1-20: ON This function is on, 1-20 is the number of times of self recovery after failure (defined as the maximum number of times of auto reset after each failure)	0	0902Н
P9-03	Time interval of fault auto reset	0. 1∼100. 0s	1.0s	0903Н
P9-04	lst fault type	1 ERROR_INVERTER UNIT 2 ERROR_OC_DURING_ACC 3 ERROR_OC_DURING_DEC 4 ERROR_OC_AT_CONST_SPEED 5 ERROR_OV_DURING_DEC 6 ERROR_OV_DURING_DEC 7 ERROR_OV_AT_CONST_SPEED 8 ERROR_CONTROL_POWER_SUPPLY 9 ERROR_UV 10 ERROR_OL_AC_DRIVE 11 ERROR_OL_MOTOR 12 ERROR_LOSE_PHASE_INPUT 13 ERROR_LOSE_PHASE_OUTPUT 14 ERROR_OH_MODULE	Read-only	0904Н

P9-05	2nd fault type	15 — ERROR_EXTERNAL EQUIPMENT 16 — ERROR_COMMUNICATE 17 — ERROR_CONTACTOR 18 — ERROR_CURRENT_DETECTION 19 — ERROR_ENCODER 21 — ERROR_EECODER 21 — ERROR_EEPROM_READWRITE 22 — ERROR_HARDWARE_AC DRIVE 23 — ERROR_MOTOR_SHORT_TO_GND 24 — ERROR_ERRPROM_INITIALIZETE 26 — ERROR_RUNNING TIME_REACHED 27 — ERROR_USER-DEFINED_1 28 — ERROR_USER-DEFINED_1 28 — ERROR_USER-DEFINED_2	Read-only	0905Н
P9-06	3rd fault type	29 — ERROR_POWER-ON_TIME_REACHED 30 — ERROR_LOAD_0 31 — ERROR_PID_FDB_LOSE 40 — ERROR_BPB_CURRENT_LIMIT 41 — ERROR_SWITCH_MOTOR_WHEN_RUN 42 — ERROR_TOO_LARGE_SPEED_DEVIATION 43 — ERROR_MOTOR_OS 45 — ERROR_MOTOR_OH 51 — ERROR_POLE_POSITION_DETECTION 52 — ERROR_ZERO_POSITION_INDENTIFICATION 53 — ERROR_FEEDBACK_UVW_SIGNAL	Read-only	0906Н
P9-07	Failure operation frequency	0.00∼655.35Hz	Read-only	0907Н
P9-08	Failure output current	0. 1∼2000. 0A	Read-only	0908H
P9-09	Failure DC-bus voltage	0~3000V	Read-only	0909Н
P9-10	Failure AC drive status	BITO: Direction of operation 0: FWD 1: REV BIT1: Running state 0: STOP 1: CONST 2: ACC 3: DEC BIT2: RESERVED BIT3: RESERVED	Read-only	090АН
P9-11	Failure S terminal status	See input terminal status diagram	Read-only	090BH
P9-12	Failure Y terminal status	See input terminal status diagram	Read-only	090СН
P9-13	Failure power on time	0~65535	Read-only	090DH
P9-14	Failure running time	0~65535	Read-only	090ЕН
P9-15	Frequency upon 2nd fault	0. 00∼655. 35Hz	Read-only	090FH
P9-16	Current upon 2nd fault	0. 1∼2000. 0A	Read-only	0910Н
P9-17	Output voltage upon 2nd fault	0~3000V	Read-only	0911Н

P9-18	AC drive status upon 2nd fault	Same as P9-10	Read-only	0912Н
P9-19	S terminal status upon 2nd fault	Same as P9-11	Read-only	0913H
P9-20	Y terminal status upon 2nd fault	Same as P9-12	Read-only	0914H
P9-21	Power-on time upon 2nd fault	Same as P9-13	Read-only	0915H
P9-22	Running time upon 2nd fault	Same as P9-14	Read-only	0916H
P9-23	Frequency upon 3rd fault	0.00∼655.35Hz	Read-only	0917Н
P9-24	Current upon 3rd fault	0. 1~2000. 0A	Read-only	0918H
P9-25	Output voltage upon 3rd fault	0~3000V	Read-only	0919Н
P9-26	AC drive status upon 3rd fault	Same as P9-10	Read-only	091AH
P9-27	S terminal status upon 3rd fault	Same as P9-11	Read-only	091BH
P9-28	Y terminal status upon 3rd fault	Same as P9-12	Read-only	091CH
P9-29	Power-on time upon 3rd fault	Same as P9-13	Read-only	091DH
P9-30	Running time upon 3rd fault	Same as P9-14	Read-only	091EH
P9-31	Backup frequency upon abnormality	0.0~100.0%	100.0%	091FH
P9-32	Motor overload protection gain	0. 20~10. 00	1.00	0920Н
P9-33	Motor overload warning coefficient	50~100%	90%	0921Н
P9-34	Recognize voltage at instantaneous stop action	0~100%	80%	0922Н
P9-35	Recognize voltage at instantaneous stop action	0~100%	80%	0923Н
P9-36	Recognize time at instantaneous rise action	0.00~100.00s	0.50s	0924Н
P9-37	Instantaneous stop deceleration gain	0~200%	100%	0925Н
P9-38	Detection level of load becoming 0	0.0~100.0%	10.0%	0926Н
P9-39	Detection time of load becoming 0	0.0~60.0s	1.0s	0927Н
P9-40	Over-speed detection value	0.0~50.0%(Maximum frequency)	20.0%	0928Н

P9-41	Over-speed detection time	0.0~60.0s	1.0s	0929Н
P9-42	Detection value of too large speed deviation	0.0∼50.0%(Maximum frequency)	20.0%	092АН
P9-43	Detection time of too large speed deviation	0. 0∼60. 0s	5. 0s	092ВН
P9-44	Overvoltage stall gain	0~100	0%	092СН
P9-45	Overvoltage stall protective voltage	120~150%	130%	092DH
P9-46	Overcurrent stall gain	0~100	20	092ЕН
P9-47	Overcurrent stall protective current	100~200%	150%	092FH
P9-48	Input phase loss protection level	1~200%	20%	0930Н
P9-49	Input phase loss protection delay	2~250. 0s	8s	0931Н
P9-50	Protection action selection 1	BITO: Motor overload (Err11) action select 0: Immediately-stop, fault alarm 1: Emergency stop, fault alarm 2: Only warning, AC drive continues to operate BIT1: Input phase loss (Err12) action select Same as BITO BIT2: Output phase loss (Err13) action select Same as BITO BIT3: External fault (Err15) action select Same as BITO	0000	0932Н
P9-51	Protection action selection 2	BITO: Abnormal communication (Err16) action selection Same as P9-50 BITO BIT1: Encoder failure (Err20) action select 0: Immediately-stop, fault alarm 1: Emergency stop, fault alarm 2: Switch to VF, continue operation BIT2: Function code reading and writing abnormal (Err21) action selection 0: Immediately-stop, fault alarm 1: Emergency stop, fault report BIT3: Motor overheating (Err25) action select Same as BITO	0000	0933Н
P9-52	Protection action selection 3	BITO: User defined fault 1 (Err27) action selection Same as P9-50 BITO BIT1: User defined fault 2 (Err28) action selection Same as BITO	0000	0934Н

Function code table

P9-52	Protection action selection 3	BIT2: Power on time arrival (Err29) action selection Same as BIT1 BIT3: Load loss (Err30) action selection 0: Immediately-stop, fault alarm 1: Emergency stop, fault alarm 2: Directly jump to 7% of the rated frequency of the motor to continue operation, and automatically return to the set frequency operation during noload operation	0000	0934Н
P9-53	Protection action selection 4	BITO: Loss of PID feedback during operation (Err31) action selection Same as PB-01 BITO BIT1: Excessive speed deviation (Err42) action selection Same as BITO BIT2: Motor over speed (Err43) action selection Same as BITO BIT3: Initial position error (Err51) action selection Same as BITO	0000	0935H
P9-54	Protection action selection 5	BITO: Speed feedback error (Err52) action selection Same as PB-01 BITO BIT1: Reserved BIT2: Reserved BIT3: Reserved	0	0936Н
P9-58	Instantaneous stop and non- stop gain Kp	0~100	40	0937Н
P9-59	Instantaneous stop and non- stop integral coefficient Ki	0~100	30	0938Н
	cess PID co	ntrol parameters		l
Function Code	Parameter Name	Setting Range	Default	Address
PA-00	PID setting source	0: PID setting source 1: AI1 2: AI2 3: AI3 4: Terminal pulse setting (PUL) 5: Communication setting 6: PLC setting 7: UP/DW control 8: Terminal selection	0	0А00Н
PA-01	PID digital setting	0.00∼PA-05	0.5Mpa	0A01H
PA-02	PID control feedback signal source	0: PID setting source 1: AI1 2: AI2 3: AI3 4: Terminal pulse feedbac	2	OAO2H

PA-02	PID control feedback signal source	K 5: Communication feedback 6: AI1 + AI2 7: MAX(AI1 , AI2) 8: MIN(AI1 , AI2) 9: Option card	2	0А02Н
PA-03	PID digital feedback	0. 00∼PA-05	1.00Mpa	0А03Н
PA-04	Feedback signal gain	0.00~10.000	1.000	0А04Н
PA-05	Feedback signal range	0~655.35	1.00	0А05Н
PA-06	PID control selection 1	BITO: Feedback feature selection 0: Positive characteristic when the feedback signal of PID is less than the given value, the output frequency of AC drive will rise. 1: Negative characteristic when the feedback signal of PID is less than the given value, the output frequency of AC drive will decrease. BIT1: PID parameter switching condition 0: No switching 1: Switching through S terminal 2: Switch automatically according to deviation 0: Invalid 1: Valid When the multi-functional digital terminal integration pause is effective, the PID integration stops operation, and at this time, the PID only has the proportional and differential functions. BIT3: Stop integration after output to limit value 0: Continue integral 1: Stop integral After the PID operation output reaches the maximum or minimum value, you can choose whether to stop the integration. If stop integral is selected, then PID integral stops calculation at this time, which may help to reduce PID overshoot.	0000	ОАОбН
PA-07	PID control selection 2	BITO: PID shutdown operation 0: Shutdown without calculation 1: Operation when shutdown BIT1: Constant pressure water supply sleep function 0: Invalid 1: Valid BIT2: Reserved BIT3: Reserved	00	0А07Н
PA-08	Proportional gain Kpl	0.00~100.00	20. 00	0A08H
PA-09	Integral time Til	0.00~10.00s	2.00s	0А09Н

PA-10	Differential time Td1	0.000~10.000s	0.000s	OAOAH
PA-11	Cut-off frequency of PID reverse rotation	0.00~maximum frequency	2.00Hz	ОАОВН
PA-12	PID deviation limit	0.0~100.0%	0.0%	0A0CH
PA-13	PID differential limit	0.0~100.00%	0. 10%	0A0DH
PA-14	PID setting change time	0.00~10.00s	0.00s	ОАОЕН
PA-15	PID feedback filter time	0.00~650.00s	0.00s	0A0FH
PA-16	PID output filter time	0.00~60.00s	0.00s	0A10H
PA-17	Reserved	_	-	0A11H
PA-18	Proportional gain Kp2	0.00~100.00	20.00	0A12H
PA-19	Integral time Ti2	0.00∼10.00s	2. 00s	0A13H
PA-20	Differential time Td2	0.00~10.000s	0.000s	0A14H
PA-21	PID parameter switchover deviation 1	0. 0∼PA−22	20.0%	0A15H
PA-22	PID parameter switchover deviation 2	PA-21~100.0%	80.0%	0А16Н
PA-23	PID initial value	0.0~100.0%	0.0%	0A17H
PA-24	PID initial value running time	0. 0∼6500. 0s	0.0s	0A18H
PA-25	Maximum deviation between two PID outputs in forward direction	0.00~100.00%	1. 00%	0А19Н
PA-26	Maximum deviation between two PID outputs in reverse direction	0.00~100.00%	1.00%	OA1AH
PA-27	Detection value of disconnection alarm	0.0~100.0%	0.0%	OA1BH
PA-28	Feedback disconnection detection time	0. 0∼120. 0s	1. 0s	0A1CH
PA-29	Dormant judgment benchmark	0.1~100.0%	95. 0%	OA1DH

	T			
PA-30	Dormant base duration	0.1∼6500.0S	30. 0s	OA1EH
PA-31	Enter dormant deceleration time	0. 1∼6500. 0S	60.0s	OA1FH
PA-32	Sleep low holding frequency	0.00∼20.00Hz	10.00Hz	0А20Н
PA-33	Low frequency operation time	0. 0∼6500. 0S	10.0s	0A21H
PA-34	Wake-up base	0.0~100.0%	50.0%	0A23H
PA-35	Wake-up base duration	0. 0∼6500. 0S	30. 0s	0A24H
PB Comm	unication co	ntrol function parameters		
Function Code	Parameter Name	Setting Range	Default	Address
PB-00	Master-slave selection	Master-slave selection 0:Slave 1:Master	0	0В00Н
PB-01	Address	1~247	1	0B01H
PB-02	Baud rate selection	0: 1200bps 1: 2400bps 2: 4800bps 3: 9600bps 4: 19200bps 5: 38400bps 6: 57600bps 7: 115200bps	3	0В02Н
PB-03	Data format	0: (N, 8, 1)No check, data format:8, stop bit:1 1: (E, 8, 1)Even parity check, data format:8, stop bit:1 2: (0, 8, 1)Odd Parity check, data format:8, stop bit:1 3: (N, 8, 2)No check, data format:8, stop bit:2 4: (E, 8, 2)Even parity check, data format:8, stop bit:2 5: (0, 8, 2)Odd Parity check, data format:8, stop bit:2	3	ОВОЗН
PB-04	Communication proportion setting	0.000~5.000	1. 000	0В04Н
PB-05	Communication response delay	0~0.500s	0.000s	0B05H
PB-06	Communication timeout failure time	0.0∼100.0s	1. 0s	0В06Н
PB-07	Transmission response processing	0: Write response 1: Write no response	0	0В08Н
PB-08	Master send selection	BITO: The first set of transmission frame selection O: Invalid 1: Run command setting 2: Master set frequency	0031	0В09Н

PB-08	Master send selection	3: Master output frequency 4: Master upper limit frequency 5: Master set torque (reserved) 6: Master output torque 7: Limit of forward speed of master torque control (reserved) 8: Limit of reserved speed of master torque control (reserved) 9: PID set by the mater A:master feedback PID BIT1: Second set of transmission frame selection Ditto BIT2: The third set of transmission frame selection Ditto BIT3: Selection of the fourth set of transmission frames Ditto	0031	ОВО9Н
PC Opt	imization Pa	rameters		

Function |

Function Code	Parameter Name	Setting Range	Default	Address
PC-00	Carrier frequency characteristic selection	BITO: 0: Temperature independent 1:Temperature related BIT1: 0:Asynchronous modulation 1: Synchronous modulation BIT2: 0: Random PWM invalid 1-A:Random PWM BIT3: Reserved	000	0С00Н
PC-01	DPWM switchover frequency upper limit	0~15.00Hz	12.00Hz	0С01Н
PC-02	Cooling fan control	O: The operation of the fan isjust related to the temperature $1{\sim}A$: The operation is related to the temperature, and during run, the fan is operating. Fixed air volume, maximum air volume above fifth gear	0	0С02Н
PC-03	Rapid current limit enable	0~1	1	0С03Н
PC-04	Dead zone compensation mode	0~2	1	0С04Н
PC-05	Dynamic braking turn-on voltage	200~2000. OV	690V	0С05Н
PC-06	Action voltage of energy consumption braking	0~100%	100%	0С06Н
PC-07	Overvoltage threshold	0∼2500. 0V	810. 0V	0С07Н
PC-08	Undervoltage threshold	200. 0∼2000. 0V	350V	0С08Н

PC-09	Solution of undervoltage fault	0: Fault 1: Continue to operate within the allowable time of undervoltage recovery 2: Continue to operate after the power supply returns to normal	0	0С09Н
PC-10	Allowable time of undervoltage recovery	0. 1∼60. 0s	2. 0s	0C0AH
PC-11	Restart method after power failure	0: Invalid 1: Valid	0	0С0ВН
PC-12	Waiting time for restart after power failure	0. 0∼120. 00s	3. 00S	ОСОСН
PD Int	ernal contro	l I PLC Function and frequency para	meters	
Function Code	Parameter Name	Setting Range	Default	Address
PD-00	Multi- frequency 1		20.0%	0D00H
PD-01	Multi- frequency 2		40.0%	0D01H
PD-02	Multi- frequency 3		60.0%	0D02H
PD-03	Multi- frequency 4		80.0%	0D03H
PD-04	Multi- frequency 5		100.0%	0D04H
PD-05	Multi- frequency 6		80.0%	0D05H
PD-06	Multi- frequency 7		60.0%	0D06H
PD-07	Multi- frequency 8	0∼100.0%	40.0%	0D07H
PD-08	Multi- frequency 9		20.0%	0D08H
PD-09	Multi- frequency 10		40.0%	0D09H
PD-10	Multi- frequency 11		60.0%	ODOAH
PD-11	Multi- frequency 12		80.0%	ODOBH
PD-12	Multi- frequency 13		100.0%	ODOCH
PD-13	Multi- frequency 14		80.0%	ODODH
PD-14	Multi- frequency 15		60. 0%	OD0EH

PD-15	PLC running mode	BITO: Circulation mode 0: Stop after the AC drive runs one cycle 1: Repeat after the AC drive runs one cycle 2: Keep final values after the AC drive runs one cycle BITI:Chronograph unit 0: Second 1: Minute 2: Hour BIT2: Power down storage mode 0: No 1: Yes BIT3: Start-up mode 0: Rerun from stage one 1: Rerun from downtime 2: Continue operation with the rest of the downtime phase	0000	ODOFH
PD-16	Running time of PLC reference 1	0.0~6500.0 (s/m/h)	10. 0	OD10H
PD-17	Running time of PLC reference 2		10. 0	OD11H
PD-18	Running time of PLC reference 3		10. 0	0D12H
PD-19	Running time of PLC reference 4		10. 0	OD13H
PD-20	Running time of PLC reference 5		10.0	OD14H
PD-21	Running time of PLC reference 6		10. 0	OD15H
PD-22	Running time of PLC reference 7		10.0	OD16H
PD-23	Running time of PLC reference 8		10.0	OD17H
PD-24	Running time of PLC reference 9	0.0~6500.0 (s/m/h)	10.0	0D18H
PD-25	Running time of PLC reference 10		10.0	OD19H
PD-26	Running time of PLC reference 11		10. 0	OD1AH
PD-27	Running time of PLC reference 12		10. 0	OD1BH
PD-28	Running time of PLC reference 13		10. 0	OD1CH
PD-29	Running time of PLC reference 14		10.0	OD1DH
PD-30	Running time of PLC reference 15		10. 0	OD1EH

PD-31	Running direction and acceleration/ deceleration time of PLC reference 1		00	OD1FH
PD-32	Running direction and acceleration/ deceleration time of PLC reference 2		00	0D20H
PD-33	Running direction and acceleration/ deceleration time of PLC reference 3	BITO: Operation direction of this section	00	0D21H
PD-34	Running direction and acceleration/ deceleration time of PLC reference 4	0: Forward 1: Reverse BIT1: Acceleration and deceleration time of this section 0: Acceleration and deceleration time 1 1: Acceleration and deceleration time 2 2: Acceleration and deceleration time 3 3: Acceleration and deceleration time 4	00	0D22H
PD-35	Running direction and acceleration/ deceleration time of PLC reference 5	3: Acceleration and deceleration time 4 BIT2: Reserved BIT3: Reserved	00	0D23Н
PD-36	Running direction and acceleration/ deceleration time of PLC reference 6		00	0D24H
PD-37	Running direction and acceleration/ deceleration time of PLC reference 7		00	OD25H
PD-38	Running direction and acceleration/ deceleration time of PLC reference 8		00	0D26H

PD-39	Running direction and acceleration/ deceleration time of PLC reference 9		00	OD27H
PD-40	Running direction and acceleration/ deceleration time of PLC reference 10		00	0D28H
PD-41	Running direction and acceleration/ deceleration time of PLC reference 11	BITO: Operation direction of this section 0: Forward 1: Reverse BIT1: Acceleration and deceleration time of this section 0: Acceleration and deceleration time 1	00	0D29Н
PD-42	Running direction and acceleration/ deceleration time of PLC reference 12	1: Acceleration and deceleration time 2 2: Acceleration and deceleration time 3 3: Acceleration and deceleration time 4 BIT2: Reserved BIT3: Reserved	00	0D2AH
PD-43	Running direction and acceleration/ deceleration time of PLC reference 13		00	OD2BH
PD-44	Running direction and acceleration/ deceleration time of PLC reference 14		00	0D2CH
PD-45	Running direction and acceleration/ deceleration time of PLC reference 15		00	OD2DH
PD-46	Swing frequency control	BITO: Swing frequency setting mode 0: Invalid swing frequency control 1: Effective swing frequency control BIT1: Frequency swing input mode 0: Automatic input 1: Manual input BIT2: Swing control 0: Variable swing 1: Fixed swing BIT3: Reserved	00	OD2EH
PD-47	Preset frequency of swing frequency	$0.00 \sim$ maximum frequency	0.00Hz	0D2FH

PD-48	Preset frequency duration	0. 00∼650. 00s	0.00s	0D30H		
PD-49	Swing frequency amplitude	0.0~100.0%	0.0%	0D31H		
PD-50	Jump frequency amplitude	0.0~50.0%	0.0%	0D32H		
PD-51	Rise time of swing frequency	0.00~650.0s	5. 0s	0D33H		
PD-52	Falling time of swing frequency	0.00~650.0s	5. 0s	0D34H		
PF Use	PF User-defined parameters					
Function Code	Parameter Name	Setting Range	Default	Address		
PF-00	PF parameter group function	BITO: 0: Normal display parameter group 1: Only display PF parameter group BIT1: 0: PF group function mode 1: PF group programming mode	00	0F00Н		
PF-01	PF macro parameter selection	0: According to the user programming mode 1-100: Call the application macro defined by the manufacturer	0	0F01H		
PF-02	PF parameter group length	3~66	18	0F02H		
PF-03 ~ PF-67	Edit definition by user	0000~1EFF	0x0001	0F03H ∼ 0F27H		
AO To	rque control	parameters				
Function Code	Parameter Name	Setting Range	Default	Address		
A0-00	Control mode	0: Speed control 1: Torque control	0	1000Н		
A0-01	Torque setting source selection	BITO: Main frequency source X selection(The full range of 1-7 option corresponds to A3-02) 0: Function code A3-02 setting 1: AII 2: AI2 3: AI3 4: PULSE setting 5: Communication setting 6: MIN(AII, AI2) 7: MAX(AII, AI2) BIT1: Auxiliary frequency source Y selection (The full range of1-7 option corresponds to A3-03) 0: Function code P5-11 setting 1: AII 2: AI2 3: AI3 4: PULSE setting 5: Communication setting 6: MIN(AII, AI2) 7: MAX(AII, AI2) The full range of 1-7 option corresponds to P5-11	000	1000Н		

Function code table

A0-01	Torque setting source selection	BIT 2:Main and frequency source selection 0: X×[A3-03] 1: Y×[A3-04] 2: X×[A3-03] + Y×[A3-04] 3: X×[A3-03] - Y×[A3-04] 4: MAX{X×[A3-03], Y×[A3-04]} 5: MIN{X×[A3-03], Y×[A3-04]} 6: Any non-zero value of the main frequency source X and auxiliary frequency source Y is valid, and the main frequency source X takes precedence.	000	1000Н
A0-02	Torque digital setting in main frequency source X	-200~200.0%	100%	1002Н
A0-03	Torque digital setting in auxiliary frequency source Y	-200~200.0%	100%	1003Н
A0-04	Torque setting in main frequency source X Gain	0~5.000	1. 000	1004Н
A0-05	Torque setting in auxiliary frequency source Y Gain	0~5.000	1. 000	1005Н
A0-06	Torque given filter time	0.0~10.00	0.11	1006Н
A0-07 ~ A0-09	Reserved	-	-	1007Н ~ 1009Н
A0-10	Forward maximum frequency in torque control	0.0Hz∼maximum frequency	50.00Hz	100AH
A0-11	Reverse maximum frequency in torque control	0.0Hz∼maximum frequency	50.00Hz	100BH
A0-12	Acceleration time in torque control	0.00~100.00s	0.00s	100CH
A0-13	Deceleration time in torque control	0.00~100.00s	0.00s	100DH
A1 Con	stant Pressu	re Water Supply Parameters		
Function Code	Parameter Name	Setting Range	Default	Address
A1-00	Multiple pump control	BITO: 0: Multiple pump control is invalid 1: Frequency transform pump fix, no timing shift 2: Frequency transform pump fix with timing shift 3: Frequency transform pump circulating, no timing shift	0110	1100Н

A1-00	Multiple pump control	4: Frequency transform pump circulating, has timing shift BIT1: Quantity of pump BIT2: 0: Start first then stop(suitable to unequal pump power) 1: Start first then stop firs(suitable to equal pump power) BIT3: 0:The time unit of timed rotation is 0.1 hours 1:The time unit of timed rotation is 0.1 minutes	0110	1100Н
A1-01	Add pump given increment 1	0.0~100.0%	0.0%	1101H
A1-02	Add pump given increment 2	0.0~100.0%	0.0%	1102H
A1-03	Add pump given increment 3	0.0~100.0%	0.0%	1103H
A1-04	Motor connect-in judge function	BITO: Valid pump judge invalid 0: Invalid 1: By S terminal invalid 2: Decided by A01-05 setting BIT1: Reserved BIT2: Reserved BIT3: Reserved	2	1104Н
A1-05	Motor connect-in setting	0: This motor and system isconnect 1: This motor connect—in system	1111	1105H
A1-06	Timing rotation time	0.1~6000.0	0. 1h	1106Н
A1-07	Timing rotation frequency limit	0.00∼maximum frequency	50. 00Hz	1107Н
A1-08	Timing rotation the quantity of rest motors	1~3	1	1108H
A1-09	Add pump frequency 1	0.00~maximum frequency	48. 00Hz	1109H
A1-10	Reduce pump frequency 1	0.00∼A1-09	25. 00Hz	110AH
A1-11	Add pump frequency 2	0.00~maximum frequency	48. 00Hz	110BH
A1-12	Reduce pump frequency 2	0.00∼A1-11	25. 00Hz	110CH
A1-13	Add pump frequency 3	0.00~maximum frequency	48. 00Hz	110DH
A1-14	Reduce pump frequency 2	0.00∼A1−13	25. 00Hz	110EH
A1-15	Add pump delay time	0∼3600.0s	5. 0S	110FH
A1-16	Reduce pump delay time	0~3600.0s	3. 0S	1110H
A1-17	Industry frequency switch lock time	0.02~10.00	0. 20s	1111H

A1-18	Industry frequency switch frequency	0.00∼maximum frequency	50.00Hz	1112H
A1-19	Fixed pump trubleshooting	0 to 2 BITO: 0:Emergency stop, report failure, all auxiliary pumps stop working. 1:Emergency stop, report failure, auxiliary pump maintains the status quo 2:Only alarm, the system continues to run BIT1:Reserved BIT2: Reserved BIT3:Reserved	0	1113Н
A1-20				1114H
A1-25	Reserved	-	_	~ 1119H
U Moni	toring Paramet	ers		
Function Code	Parameter Name	Setting Range	Default	Address
U-00	Set frequency	_	_	2110H
U-01	Output frequency	_	-	2111H
U-02	Output current	-	_	2112H
U-03	Output voltage	_	_	2113H
U-04	Input voltage	_	-	2114H
U-05	Mechanical speed	_	_	2115H
U-06	Bus voltage	_	-	2116Н
U-07	Output power	-	_	2117Н
U-08	Target torque	_	-	2118H
U-09	Output torque	-	-	2119Н
U-10	PID setting	_	_	211AH
U-11	PID feedback	-	-	211BH
U-12	AI1 input value	-	-	211CH
U-13	AI2 input value	-	-	211DH
U-14	HS input value	-	-	211EH
U-15	Counter count value	-	-	211FH
U-16	AI3 input value	-	_	2120H
U-17	Terminal S Status	-	_	2121H
U-18	Terminal Y Status	-	-	2122H
U-19	A01 output value	-	-	2123Н
U-20	A02 output value	-	-	2124H
U-21	HY output value	-	-	2125H
U-22	Reserved	-	-	2126Н
U-23	Model temperature	-	-	2127Н
U-24	Output excitation	-	-	2128H
U-25	Power factor	-	-	2129Н
U-26	Power-on time	-	-	212AH
U-27	power-on operation time	-		212BH
U-28	Accumulated time	_	_	212CH

	T			
U-29	AC drive running state	-	-	212D
U-30	Maximum current			212E
U-31	Maximum voltage	-	-	212F
U-32	Maximum temperature of this operation	-	-	2130
U-33	Miniamum voltage	_	_	2131
U-34	Rated power of AC drive	-	_	2132
U-35	Rated voltage of AC drive	-	_	2133
U-36	Rated current of AC drive	-	_	2134
U-37	AC version	_	-	2135
U-38	MC version	_	-	2136
U-39	Communication frequency	-	_	2137
U-40	Main frequency X display	-	-	2138
U-41	Auxiliary frequency Y display	-	-	2139
U-42	Remaining time	-	-	213A
U-43	Target voltage upon V/F separation	-	-	213E
U-44	Output voltage upon V/F separation	-	-	2130
U-45	PG feedback value	-	-	2130
U-46	Linear speed	_	-	213E
U-47	PM rotor position	-	-	213F
U-48	Resolver position	_	-	2140
U-49	ABZ position	_	-	2141
U-50	Phase Z counting	_	-	2142
U-51	Communication sending value	-	-	2143
U-52	Communication receiving value	-	_	2144
U-53	Motor temperature	-	-	2145
U-54	Multiple pumps control	-	-	2146

Press PRG key for 2 seconds continuously to enter the U monitoring parameter group item

8.2 Appendix II: RS485 communication protocol

Introduction to communication protocol

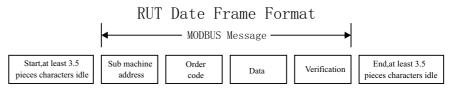
EC6000 series AC drive is equipped with RS485 communication interface as standard, and adopts master-slave communication of international standard ModBus communication protocol. Users can realize centralized control (set converter control command, operation frequency, modification of relevant function code parameters, monitoring of converter working status and fault information, etc.) through PC / PLC, master computer, main station AC drive, etc., to adapt to specific application requirements.

Application mode

- 1. EC6000 series AC drive has a "single master and multi slave" control network connected to RS485 bus. When the master uses the broadcast command (slave address is 0), the slave does not answer.
- 2. EC6000 only provides RS485 interface, asynchronous half duplex. If the communication port of external equipment is RS232, an additional RS232 / RS485 converter is required.
- 3. Modbus protocol defines the information content and use format of asynchronous transmission in serial communication, which can be divided into rut mode and ASCII mode. EC6000 is RTU (remote terminal unit) mode.

• Frames in Communication structure

The format of communication data is as follows:


Byte composition: including start bit, 8 data bits, parity bit and stop bit.

Start Bitl Bit2	Bit3 Bit4	Bit5 Bit6	Bit7	Bit8	Parity Bit	Stop Bit
-----------------	-----------	-----------	------	------	---------------	-------------

The information of a frame must be transmitted in a continuous data stream. If the interval of more than 1.5 bytes before the end of the whole frame transmission, the receiving device will clear these incomplete information and mistakenly think that the next byte is the address domain part of the new frame. Similarly, if the interval time between the start of a new frame and the previous frame is less than 3.5 bytes, the receiving device will consider it as the continuation of the previous frame. Due to the frame confusion, the final CRC check value is not correct, resulting in communication errors.

Frame header	3.5 bytes transmission time	
slave address	mail address: 0-247 (decimal) (0 is broadcast address)	
Command code	03h: read slave parameters 06h: write slave parameters 08h: loop self test	
Data area	Parameter address, number of parameters, parameter value, etc	
CRC CHK low	Test value: 16 bit CRC test value	
CRC CHK high	rest value. To bit the test value	
Frame tail	3.5 bytes transmission time	

In the RTU mode, the new one frame use at least 3.5 pieces bytes transmit time stop interval as start. The follow transmit data region are in proper sequence: sub machine address, operation order code, data and CRC verify byte, each region transmit byte all are hexadecimal 0....9, A....F. The internet equipment continue sense the internet bus line, include within the stop interval time. When received the first region(address information), each internet equipment all decoding this byte to judge whether it is send to own. At the final one byte transmit finished, and make one at least 3.5 pieces bytes transmit time interval to present this frame finished, after this, a new message can start.

Order code and communication data description

Order code: o3H, read N pieces byte(word), the max can continue read five words.

Example: from the AC drive which sub machine address is 01h, the start address of memory is 2100H([C-00]), reading continue 3 pieces words, then the structure description of this frame as below:

START	3.5 pieces bytes transmit time
Sub machine address	01H
Order code	03Н
Start address high position	21H
Start address low position	00Н
Data quantity high position	00Н
Data quantity low position	03Н
CRC CHK low position	0FH
CRC CHK high position	F7H
END	3.5 pieces bytes transmit time

RTU sub machine responding information(when normal)

START	3.5 pieces bytes transmit time
Sub machine address	01H
Order code	03H
Bytes quantity low position	06H
Data address 2100H high position	13H
Data address 2100H low position	88H
Data address 2101H high position	00Н
Data address 2101H low position	00Н

Data address 2102H high position	00H
Data address 2102H low position	00Н
CRC CHK low position	90Н
CRC CHK high position	A6H
END	3.5 pieces bytes transmit time

RTU sub machine responding information (when abnormal)

START	3.5 bytes transmit time
Sub machine address	01H
Order code	83H
Error code	04H
CRC CHK low position	40H
CRC CHK high position	F3H
END	3.5 bytes transmit time

Order code: 06H, write one word

Function: write one word data into appointed data address, can use into modify the frequency transformer parameter value.

Example: write the 5000(1388H) in the 3000H address of sub machine address 1 frequency transformer. Then the structure description of this frame as below:

RTU main machine order information

START	3.5 pieces bytes transmit time
Sub machine address	01H
Order code	06Н
Check the code high position	30Н
Check the code low position	00Н
Data high position	13Н
Data low position	88H
CRC CHK low position	8BH
CRC CHK high position	9CH
END	3.5 pieces bytes transmit time

RTU sub machine responding information(when normal)

START	3.5 pieces bytes transmit time
Sub machine address	01H
Order code	06Н
Check the code high position	30H
Check the code low position	00Н
Data high position	13Н
Data low position	88H
CRC CHK low position	8BH
CRC CHK high position	9CH
END	3.5 pieces bytes transmit time

RTU sub machine responding information(when abnormal)

START	3.5 pieces bytes transmit time
Sub machine address	01H
Order code	86H
Error code	01H
CRC CHK low position	83H
CRC CHK high position	АОН
END	3.5 pieces bytes transmit time

Order code: 08H, return circuit self check

Function: send back the sub machine responding information which same to the main machine order information, used to check whether the signal transmit between main machine and sub machine are normal.

RTU main machine order information

START	3.5 pieces bytes transmit time
Sub machine address	01H
Order code	08Н
Check the code high position	00Н
Check the code low position	00Н
Data high position	13Н
Data low position	88H
CRC CHK low position	EDH
CRC CHK high position	5DH
END	3.5 pieces bytes transmit time

RTU sub machine responding information (when normal)

START	3.5 pieces bytes transmit time
Sub machine address	01H
Order code	08H
Check the code high position	00Н
Check the code low position	00Н
Data high position	13Н
Data low position	88H
CRC CHK low position	EDH
CRC CHK high position	5DH
END	3.5 pieces bytes transmit time

RTU sub machine responding information (when abnormal)

START	3.5 pieces bytes transmit time
Sub machine address	01H
Order code	88H
Error code	03Н
CRC CHK low position	06H
CRC CHK high position	01H
END	3.5 pieces bytes transmit time

Communication frame error verify method

The standard Modbus series internet adopt two type error test method. Odd-even verification used to verify each character, CRC test used to verify one frame data.

1: Odd-even verification

The user can configure the controller at odd or even verification, or no verification. This will decide the odd-even verification position of each character how to set.

If appointed odd or even verification, the digit bit of "1" will count the digit bit of each character (ASCII mode 7 data capacity, 8 data bit in RTU). Example, RTU character frame include the below 8 pieces data bit: the number of whole "1" in 1 1 0 0 0 1 0 1 is 4 pieces, if use even verification, the odd-even verification bit of frame will be 0, then obtain the quantity of whole "1" still be 4, also not process verification test. Replace one attached stop bit fill to the need transmit character frame.

2: CRC-16(circulating redundancy verification)

Use RTU frame format, the frame include the counting frame error test area which based on CRC method. CRC region test the content of the whole frame. CRC region is two bits, include the 16 bits binary system value. This calculating method of CRC adopt international standard CRC verification rules, the user can reference the relate standard CRC algorithm when edit the CRC algorithm, write out the CRC calculating procedure which really in accordance with requirements.

The definition of communication data address

This part is the address definition of communication data, used to control the running of AC drive, obtain the status information of AC drive and the relate function parameter setting of AC drive, etc.

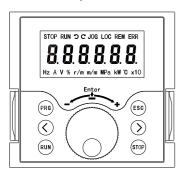
(1) EC6000 series function parameter address description rules

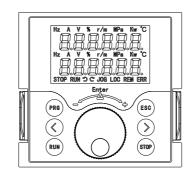
Use the function parameter serial number of AC drive as the register address, divided into two parts at high bits and low bits. High bits represent the function parameter located group serial number, low bits represent the serial number in group of function parameter, need translate into hexadecimal. The address of detail parameter please check the communication address column in the parameter overview table in chapter?

Note: because the communication exist the possibility that frequently rewrite parameter value, if EEPROM frequently been storage then will reduce the working life. For the users, some function code parameter needn't storage under the communication mode, only need to change the value of RAM in the sheet then can meet use requirements. AC80B communication agreement stipulated that when use the write order, only write in AC drive RAM, not storage when power off, if use write order (41H), write in EEPROM, means storage when power off.

Control order function instruction	Address definition	Data meanings instruction		R/W characteristics
		BIT0	0-stop order 1-Running order	
		BIT1	O-Corotation order 1-Reversal order	
Communication running	2000H	BIT2	STOP command	W
control order		BIT3	0-No order 1-Reset order	
		BIT4	Jog command	
		BIT12-15	Y1-Y4	
Communication frequency setting	2001Н	Setting	range:0-Maximum frequency	W
Communication set upper limit frequency	2002Н	Setting	range:0-Maximum frequency	W
Communication PID give value	2003Н	Setting	range: 0-100.0%	W
Communication PID feedback value	2004Н	Setting	range: 0-100.0%	W
Communication A01 output value	2005Н	Setting	range: 0-100.0%	W
Communication A02 output value	2006Н	Setting	range: 0-100.0%	W
Communication HDO output value	2007Н	Setting	range: 0-50000HZ	W
Communication VF separate voltage setting	2008Н	Setting	range: 0-100.0%	W
Communication torque setting value	2009Н	Setting	range: 0-100.0%	W

Monitor command function instruction	Address definition	Data meanings instruction		Data meanings instruction		R/W characteristics
		BIT0	RUN			
		BIT1	REV			
		BIT2	Ready			
	2100Н	BIT3	Fault			
AC drive		BIT4	Jogging			
operation status		BIT5	Pre-alarm	R		
		BIT6	Auto-turning]		
		BIT7-10	Operation control mode 0:Operation panel control 1:Terminal control 2:RS485 control 3:Option card 4:Terminal switchover			

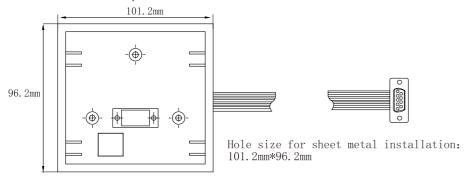

AC drive operation status	2100Н	BIT11-12	Motor control mode 0: V/F mode 1: SVC control 2: FVC control Hibernation sign	R
AC drive fault type	2101	2 ERR 3 ERR 4 ERR 5 ERR 6 ERR 7 ERR 8 ERR 10 ERR 11 ERR 11 ERR 12 ERR 13 ERR 14 ERR 14 ERR 15 ERR 16 ERR 20 ERR 20 ERR 20 ERR 21 ERR 22 ERR 23 ERR 24 ERR 26 ERR 27 ERR 28 ERR 30 ERR 31 ERR 40 ERR 41 ERR 41 ERR 41 ERR 42 ERR 43 ERR 45 ERR	OR_OL_AC DRIVE OR_OL_MOTOR OR_LOSE_PHASE_INPUT OR_LOSE_PHASE_OUTPUT OR_OH_MODULE OR_EXTERNAL EQUIPMENT OR_COMMUNICATE OR_CONTACTOR OR_CURRENT_DETECTION OR_AUTO-TUNING OR_ECODER OR_EEPROM_READWRITE OR_HARDWARE_AC DRIVE OR_MOTOR_SHORT_TO_GND OR_ERRPROM_INITIALIZETE OR_RUNNING_TIME_REACHED OR_USER-DEFINED_1 OR_USER-DEFINED_1 OR_USER-DEFINED_2 OR_POWER-ON_TIME_REACHED OR_LOAD_O OR_PID_FDB_LOSE OR_PBD_CURRENT_LIMIT OR_SWITCH_MOTOR_WHEN_RUN OR_TOO_LARGE_SPEED_DEVIATION OR_MOTOR_OS OR_MOTOR_OH OR_PDLE_POSITION_INDENTIFI-	R


8.3 Appendix three: Product specification Product standard specification

Voltage	220V	Voltage	380V
Power (kW)	Rated output current(A)	Power (kW)	Rated output current(A)
0. 4	2. 1	0. 75	3. 4
0. 75	3. 8	1.5	4. 8
1.5	7. 0	2. 2	6. 2
2. 2	9. 0	4. 0	11.0
4. 0	13. 0	5. 5	14. 0
5. 5	25. 0	7. 5	18. 0
7. 5	33. 0	11	27. 0
11	45. 0	15	34. 0
15	60. 0	18. 5	41. 0
18. 5	75. 0	22	52. 0
22	91.0	30	65. 0
30	112. 0	37	80. 0
		45	96. 0
		55	128. 0
		75	165. 0
		90	185. 0
		110	210. 0
		132	250. 0
		160	307. 0
		200	380. 0
		220	450. 0
		250	480. 0
		280	520. 0
		315	605. 0
		350	670. 0
		400	750. 0
		450	810. 0
		500	860. 0
		560	990. 0
		630	1100. 0

Appendix four: Optional digital manipulator and external components

■ LED manipulator PU-01



■ LCD manipulator PU-02

■ External components PUZ-01

8.5 Appendix five: Braking resistor Braking resistor selection list

EC6000

AC drive	Resistance specifications		Braking	Applicable	Applicable
model	Power W	$\mathop{Resistor}_{\Omega}$	torque%	motor/KW type G	motor/KW type P
EC600D4G23	80	200	125	0.4	-
EC60D75G23	100	200	125	0.75	-
EC601D5G23	300	100	125	1.5	-
EC602D2G23	300	70	125	2.2	-
EC603D7G23	400	40	125	3.7	-
EC605D5G23	500	27.2	125	5.5	-
EC607D5G23	1000	20	125	7.5	-
EC60011G23	1000	14	125	11	-
EC60015G23	4800	10	125	15	-
EC618D5G23	4800	10	125	18.5	-
EC60022G23	4800	10	125	22	-
EC60030G23	6000	7	125	30	-
EC60037G23	9600	7	125	37	-
EC60045G23	9600	3.5	125	45	-
EC60055G23	12000	3.5	125	55	-
EC60075G23	18000	3	125	75	-
EC60090G23	18000	3	125	90	-
EC60110G23	18000	3	125	110	-
EC60132G23	36000	3	125	132	-
EC60D75G43	80	750	125	0.75	-
EC601D5G02D2P43	300	400	125	1.5	2.2
EC602D2G03D0P43	300	250	125	2.2	3.0
EC603D0G04D0P43	400	150	125	3.0	4.0
EC604D0G05D5P43	500	125	125	4.0	5.5
EC605D5G07D5P43	500	100	125	5.5	7.5
EC607D5G0011P43	1000	75	125	7.5	11
EC60011G0015P43	1000	50	125	11	15

EC60015G18D5P43 1500 125 15 18.5

	l			l	l
EC618D5G0022P43	4800	32	125	18.5	22
EC60022G0030P43	4800	27.2	125	22	30
EC60030G0037P43	6000	20	125	30	37
EC60037G0045P43	9600	16	125	37	45
EC60045G0055P43	9600	14	125	45	55
EC60055G0075P43	12000	10	125	55	75
EC60075G0090P43	18000	7	125	75	90
EC60090G0110P43	18000	7	125	90	110
EC60110G0132P43	18000	7	125	110	132
EC60132G0160P43	36000	3.5	125	132	160
EC605D5G07D5P43	36000	3.5	125	160	185
EC607D5G0011P43	36000	3.5	125	185	220
EC60011G0015P43	48000	3	125	220	250
EC601D5G02D2P43	48000	3	125	250	280
EC602D2G03D0P43	48000	3	125	280	315
EC603D0G04D0P43	48000	3	125	315	350
EC604D0G05D5P43	48000	3	125	350	400
EC605D5G07D5P43	48000	3	125	400	450
EC607D5G0011P43	48000	3	125	450	500
EC60011G0015P43	48000	3	125	500	560
EC60011G0015P43	48000	3	125	560	630

Note!

- 1. If the AC drive of 400V class, ≥37KW or above, to achieve rapid braking, a brake unit must be installed.
 - 2. Select the resistance value and frequency of use established by our company.
- 3. The company does not bear any responsibility for the damage to the AC drive or other equipment caused by the use of braking resistors and braking modules not provided by our company.
- 4. The installation of the braking resistor must consider the safety and flammability of the environment.
 - 5. To change the resistance and power number, please contact your local dealer.
- 6. The braking resistor and braking module need to be ordered separately. For details, please contact your local dealer.

8.6 Appendix six: Warranty Service

Warranty Card

User Name		
User Address		
User Contact	Tel	
Specification	Number	
Distributor		
Contacts	Date of delivery	

ZHE JIANG EACN ELECTRONIC TECHNOLOGY CO.,LTD.

Address: No.1 Jinhe Road, Qinshan Street, Haiyan County, Jiaxing City, Zhejiang Province Website: www.eacon.cn E-mail: overseas@eacon.cc